

Android Application Development

Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake
Meike

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Android Application Development
by Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike

Copyright © 2009 Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://mysafaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sumita Mukherji
Copyeditor: Genevieve d’Entremont
Proofreader: Sada Preisch

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Android Application Development, the image of an Eastern quoll and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-52147-9

[M]

1241533714

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9780596521479

Table of Contents

Preface . ix

Part I. Development Kit Walk-Through

1. Getting to Know Android . 3
Why Android? 3
The Open Handset Alliance 4
The Android Execution Environment 5
Components of an Android Application 6
Android Activity Lifecycle 8
Android Service Lifecycle 10
How This Book Fits Together 10

2. Setting Up Your Android Development Environment . 13
Setting Up Your Development Environment 13

Creating an Android Development Environment 14
Hello, Android 18

Where We’re Going 18
Starting a New Android Application: HelloWorld 18
Writing HelloWorld 22
Running HelloWorld 24

3. Using the Android Development Environment for Real Applications 27
MicroJobs: This Book’s Main Sample Application 27
Android and Social Networking 27
Downloading the MJAndroid Code 30
A Brief Tour of the MJAndroid Code 30

The Project Root Folder (MJAndroid) 30
The Source Folder (src) 31
The Resource Folder (res) 32

First Steps: Building and Running the MicroJobs Application 33

iii

A Very Short Tour of the Android SDK/Eclipse IDE 33
Loading and Starting the Application 35
Digging a Little Deeper: What Can Go Wrong? 36
Running an Application on the T-Mobile Phone 39

Summary 41

4. Under the Covers: Startup Code and Resources in the MJAndroid Application 43
Initialization Parameters in AndroidManifest.xml 44
Initialization in MicroJobs.java 46

More Initialization of MicroJobs.java 52
Summary 56

5. Debugging Android Applications . 57
The Tools 57
Eclipse Java Editor 58

Java Errors 58
The Debugger 64
Logcat 67
Android Debug Bridge (adb) 71
DDMS: Dalvik Debug Monitor Service 74
Traceview 75

Summary 80

6. The ApiDemos Application . 81
Application Setup in the Manifest File 81
Finding the Source to an Interesting Example 83

Custom Title Demo 83
Linkify Demo 84

Adding Your Own Examples to ApiDemos 84

7. Signing and Publishing Your Application . 87
Test Your Application 88
Attach an End User License Agreement If Desired 89
Create and Attach an Icon and Label 89
Clean Up for Release 90
Version Your Application 90
Obtaining a Signing Certificate and API Key 90

Getting a Signing Certificate for an Application You Are Going to Ship 91
Getting a Signing Certificate While Debugging 93

Signing Your Application 95
Retesting Your Application 96
Publishing on Android Market 96

Signing Up As an Android Developer 96

iv | Table of Contents

Uploading Your Application 96

Part II. Programming Topics

8. Persistent Data Storage: SQLite Databases and Content Providers 101
Databases 101

Basic Structure of the MicroJobsDatabase Class 102
Reading Data from the Database 107
Modifying the Database 110

Content Providers 114
Introducing NotePad 116
Content Providers 118
Consuming a Content Provider 129

9. Location and Mapping . 137
Location-Based Services 137
Mapping 139
The Google Maps Activity 139
The MapView and MapActivity 140
Working with MapViews 140

MapView and MyLocationOverlay Initialization 141
Pausing and Resuming a MapActivity 144
Controlling the Map with Menu Buttons 145
Controlling the Map with the KeyPad 147

Location Without Maps 148
The Manifest and Layout Files 148
Connecting to a Location Provider and Getting Location Updates 149
Updating the Emulated Location 152

10. Building a View . 157
Android GUI Architecture 157

The Model 157
The View 158
The Controller 159
Putting It Together 159

Assembling a Graphical Interface 161
Wiring Up the Controller 166

Listening to the Model 168
Listening for Touch Events 173
Listening for Key Events 176
Alternative Ways to Handle Events 177
Advanced Wiring: Focus and Threading 179

Table of Contents | v

The Menu 183

11. A Widget Bestiary . 187
Android Views 188

TextView and EditText 188
Button and ImageButton 191
Adapters and AdapterViews 192
CheckBoxes, RadioButtons, and Spinners 193

ViewGroups 198
Gallery and GridView 198
ListView and ListActivity 202
ScrollView 204
TabHost 205

Layouts 208
Frame Layout 209
LinearLayout 209
TableLayout 213
AbsoluteLayout 215
RelativeLayout 216

12. Drawing 2D and 3D Graphics . 221
Rolling Your Own Widgets 221

Layout 222
Canvas Drawing 226
Drawables 237
Bitmaps 242

Bling 243
Shadows, Gradients, and Filters 246
Animation 247
OpenGL Graphics 252

13. Inter-Process Communication . 257
Intents: Simple, Low-Overhead IPC 258

Intent Objects Used in Inter-Process Communication 258
Activity Objects and Navigating the User Interface Hierarchy 259
Example: An Intent to Pick How We Say “Hello World” 259
Getting a Result via Inter-Process Communication 262

Remote Methods and AIDL 265
Android Interface Definition Language 266
Classes Underlying AIDL-Generated Interfaces 270
Publishing an Interface 273
Android IPC Compared with Java Native Interface (JNI) 274
What Binder Doesn’t Do 275

vi | Table of Contents

Binder and Linux 275

14. Simple Phone Calls . 277
Quick and Easy Phone Calls 277

Creating an Example Application to Run the call Method 278
Embedding the Code Snippet in a Simple Application 279

Exploring the Phone Code Through the Debugger 280
Creating an Instance of an Intent 282
Adding Data to an Instance of an Intent 283
Initiating a Phone Call 284

Exception Handling 284
Android Application-Level Modularity and Telephony 285

15. Telephony State Information and Android Telephony Classes 287
Operations Offered by the android.telephony Package 287

Package Summary 288
Limitations on What Applications Can Do with the Phone 288
Example: Determining the State of a Call 289

Android Telephony Internals 291
Inter-Process Communication and AIDL in the
android.internal.telephony Package 291
The android.internal.telephony Package 292
The android.internal.telephony.gsm Package 295
Exploring Android Telephony Internals 299

Android and VoIP 302

Appendix: Wireless Protocols . 305

Index . 309

Table of Contents | vii

Preface

When Google announced the development of Android, the field of mobile platforms
was already well established. Even in the narrower category of open source platforms,
a number of viable alternatives were being pushed by proponents. Yet Android has
stimulated not only widespread technical interest but rampant speculation about its
potential to completely transform the world of the personal device. Instead of a con-
venient prop to support a set of familiar functions, such as phone calls, email, and
restaurant lookups, the electronic device could become an open-ended window into
the whole world—could become, in short, anything that the user and the developer
could think to make it.

How much of the cogent analysis and fervid hype will come to pass can be discussed
elsewhere; this book is for those who want to get to know the programming environ-
ment for Android and learn what they themselves can do to make a difference. We have
spent many grueling months investigating the source code over multiple releases and
trying out the functions of the library and development kit. We have been working hard
to uncover the true Android, going beyond any documentation we could find online
or in print.

This book, read carefully, can enable any Java programmer to develop useful and robust
applications for Android. It also takes you into the internals in some places, so you
know how Android supports what you’re doing—and so you can play around with its
open source code if you like.

Audience
This book is intended for experienced software developers who want to develop ap-
plications in the Android mobile environment. It assumes you have some experience
with the Java programming language, with using Java to implement user interfaces,
and that you are at least familiar with the technologies Android uses, such as XML,
SQL, GTalk(XMPP), OpenGL-ES, and HTTP.

ix

How This Book Is Organized
This book is organized around the core example program introduced in Chapter 2.
Later chapters illustrate development techniques by adding to the example through
implementing modular extensions, where this is feasible. Some chapters (and the Ap-
pendix) cover more advanced topics that are not required for many applications.

Part I, Development Kit Walk-Through, gets you started with the basics you’ll need to
write applications.

Chapter 1, Getting to Know Android, explains Android’s place in the market and its
basic architecture.

Chapter 2, Setting Up Your Android Development Environment, tells you how to down-
load the software you need, including Eclipse and the Android plug-in, and how to get
started programming.

Chapter 3, Using the Android Development Environment for Real Applications, describes
the files that make up a typical Android program.

Chapter 4, Under the Covers: Startup Code and Resources in the MJAndroid Applica-
tion, looks at the fundamental Java code and XML resources that every application
needs.

Chapter 5, Debugging Android Applications, introduces a number of tools for debugging
and performance, including Eclipse, logs, the Android Debug Bridge (adb), DDMS, and
Traceview.

Chapter 6, The ApiDemos Application, offers a high-level tour of the sample Android
code included in the toolkit, with tips for exploring it yourself.

Chapter 7, Signing and Publishing Your Application, shows you how to make your ap-
plication ready for public use.

Part II, Programming Topics, explores in depth the major libraries you’ll need, and
shows you how to use them effectively.

Chapter 8, Persistent Data Storage: SQLite Databases and Content Providers, shows
how to use the two most powerful means in Android for storing and serving data.

Chapter 9, Location and Mapping, shows how to determine and display the user’s lo-
cation, and how to use Google Maps.

Chapter 10, Building a View, introduces graphical programming on Android by ex-
plaining how to create and manipulate windows and views.

Chapter 11, A Widget Bestiary, covers the most popular and useful graphical interface
elements provided by Android.

Chapter 12, Drawing 2D and 3D Graphics, shows how to lay out graphics, and delves
into drawing, transforming, and animating your own graphics.

x | Preface

Chapter 13, Inter-Process Communication, covers Intents and Remote Methods, which
allow you to access the functionality of other applications.

Chapter 14, Simple Phone Calls, shows how to dial a number from an application, and
explains how Android carries out the request.

Chapter 15, Telephony State Information and Android Telephony Classes, shows how
to get information about telephony service and phone calls, and offers a tour of tel-
ephony internals.

Appendix, Wireless Protocols, offers some background and history on wireless services.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

Preface | xi

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Android Application Development by Rick
Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike. Copyright 2009 Rick
Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike, 978-0-596-52147-9.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596521479

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

xii | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596521479
http://www.oreilly.com

Acknowledgments
We’d like to thank Bill Dimmick, Brad O’Hearne, and Hycel Taylor for their thoughtful
and careful reviews of this book under a high-pressure timeline.

Rick Rogers
Like anything worth doing, I suppose, this book ended up taking more time and effort
than any of us planned in the beginning. I’d like to thank my coauthors and the great
folks at O’Reilly for sticking with it and bringing the work to fruition, through all the
twists and turns. I’d also like to thank my family and friends, who encouraged me all
through the process, and lent an ear when I just needed to talk. Most especially, though,
I want to dedicate the book to my wife, Susie, whose patience knows no bounds, and
whose amazing attitude toward life is an enduring inspiration for me no matter what
I’m doing.

John Lombardo
I would like to thank my wonderful wife, Dena, who kept life from interfering when I
closed the office door to work on the book. I want to dedicate this book to my mother,
Marguerite Megaris, who died suddenly in 2007. I gave her a copy of my first book,
Embedded Linux (New Riders), back in 2001. She cracked it open to a page with some
assembly code, looked at it for about 10 seconds, closed it, and said, “That’s nice, dear.”
We had a good laugh over that. I’d also like to thank all the wonderful people at O’Reilly
for all their hard work. I’d especially like to thank Andy Oram, who coddled and
prodded us in just the right doses to keep the book humming along at a good clip.

Zigurd Mednieks
Thanks to Terry, Maija, and Charles for putting up with my schedule while I was writ-
ing, and to Andy Oram and my coauthors for letting me participate, and hopefully,
contribute.

Blake Meike
I am very grateful to have been invited to work with such an amazing group of people.
Thanks to Zigurd for suggesting it; Andy Oram for practically holding my pen; and
Rick, John, and Isabel Kunkle for making those Thursday morning calls a pleasure.
Thanks to Mike Morton for actually reading both the text and the code. Though it may
seem obvious, thanks to the Google Android developers. Not bad guys. Not bad at all.
Finally, love and thanks to my wife, Catherine, who never let me see any disappoint-
ment when I said, yet again, “Can’t. Gotta work on the book this weekend.” Yes, babe,
let’s do the bookcase now.

Preface | xiii

PART I

Development Kit Walk-Through

This book gets you started with Android. We’ll explain what’s special about Android’s
features and how its architecture achieves its goals, and show you how to get started
programming. You’ll learn the tools that let you write programs using Eclipse; run them
on the Android emulator; and carry out debugging, tracing, and profiling. The last
chapter in Part 1 shows you how to sign your program for public distribution.

CHAPTER 1

Getting to Know Android

Why Android?
Google’s Android mobile phone software platform may be the next big opportunity for
application software developers.

Google announced the Open Handset Alliance and the Android platform in November
of 2007, releasing the first beta version of the Android Software Development Kit (SDK)
at the same time. Within a matter of a few months, over 1 million people had down-
loaded versions of the SDK from Google’s website. In the United States, T-Mobile
announced the G1 Android mobile phone in October of 2008, and estimates are that
several hundred thousand G1s were sold before the end of that year. There are already
several competing mobile phone software stacks in the market, so why is there such
interest in Android?

Android has the potential for removing the barriers to success in the development and
sale of a new generation of mobile phone application software. Just as the the stand-
ardized PC and Macintosh platforms created markets for desktop and server software,
Android, by providing a standard mobile phone application environment, will create
a market for mobile applications—and the opportunity for applications developers to
profit from those applications.

Why hasn’t it been profitable to develop mobile applications for smartphones until
now? And what are the problems that Android alleviates?

Fragmentation
About 70 million smartphones were sold in 2007, so there are a lot of phones
available to run applications, but each brand has a different application environ-
ment. This is particularly true of Linux-based phones, where each handset vendor
has had to assemble scores of pieces of third-party software to create a viable mobile
phone platform. There is no chance that they would all choose the same compo-
nents to build a mobile smartphone.

3

Java was supposed to help this situation, with J2ME and the wireless Java recom-
mendations (CDC, CLDC, MIDP, JTWI, MSA, etc.) providing a common
applications environment across handsets. Unfortunately, almost every handset
that supports J2ME also support vendor-proprietary extensions that limit the port-
ability of applications.

Proprietary software stacks
Most existing smartphones use proprietary, relatively closed software stacks, such
as Nokia’s Series 60 with the Symbian operating system, or Microsoft’s Windows
Mobile. Modifications to these stacks (adding a driver, for example) have to be
done either by the stack owner or by the handset manufacturer. The stacks are not
open source, so changing anything in the stack is difficult at best. Most Linux-
based phones to date have an open source kernel (as required by the GPL license),
but keep other details of the software stack (application framework, multimedia
framework, applications) proprietary.

Closed networks
Series 60 and Windows Mobile do allow the addition of third-party applications,
but mobile operators often lock the handsets so applications cannot be added. The
operators claim this is needed to preserve the integrity of their mobile networks,
making sure that viruses and spam are not inadvertently installed by end users. It
also suits the operator’s business model, because their mobile phone customers
are confined to the operators’ “walled garden” of applications, both on the phone
and in the network. Android includes an open catalog of applications, Android
Market, that users can download over the air to their Android phones. It also allows
direct loading of applications via USB connection.

Android gives developers a way to develop unique, creative applications and get those
applications in the hands of customers. Hundreds of thousands of Android mobile
phone users are already there, looking for the next clever or useful application, and that
application could be yours.

The Open Handset Alliance
Google and 33 other companies announced the formation of the Open Handset Alli-
ance on November 5, 2007. According to the joint press release from that day:

This alliance shares a common goal of fostering innovation on mobile devices and giving
consumers a far better user experience than much of what is available on today’s mobile
platforms. By providing developers a new level of openness that enables them to work
more collaboratively, Android will accelerate the pace at which new and compelling
mobile services are made available to consumers.

For us as mobile application developers, that means we are free to develop whatever
creative mobile applications we can think of, free to market them (or give them, at our
option) to Android mobile phone owners, and free to profit from that effort any way

4 | Chapter 1: Getting to Know Android

we can. Each member of the Open Handset Alliance has its own reasons for partici-
pating and contributing its intellectual property, and we are free to benefit.

The Open Handset Alliance integrates contributed software and other intellectual
property from its member companies and makes it available to developers through the
open source community. Software is licensed through the Apache V2 license, which
you can see at http://www.apache.org/licenses/LICENSE-2.0.txt. Use of the Apache li-
cense is critical, because it allows handset manufacturers to take Android code, modify
it as necessary, and then either keep it proprietary or release it back to the open source
community, at their option. The original Alliance members include handset manufac-
turers (HTC, LG, Motorola, Samsung), mobile operators (China Mobile Communica-
tions, KDDI, DoCoMo, Sprint/Nextel, T-Mobile, Telecom Italia, Telefonica),
semiconductor companies (Audience, Broadcom, Intel, Marvell, NVidia Qualcomm,
SiRF, Synaptics), software companies (Ascender, eBay, esmertec, Google, LivingImage,
LiveWire, Nuance, Packet Video, SkyPop, SONiVOX), and commercialization com-
panies (Aplix, Noser, TAT, Wind River). The Alliance includes the major partners
needed to deliver a platform for mobile phone applications in all of the major
geographies.

The Alliance releases software through Google’s developer website (http://developer
.android.com). The Android SDK for use by application software developers can be
downloaded directly from that website. (The Android Platform Porting Kit for use by
handset manufacturers who want to port the Android platform to a handset design is
not covered in this book.)

The Android Execution Environment
Applications in Android are a bit different from what you may be used to in the desktop
and server environments. The differences are driven by a few key concepts unique to
the mobile phone environment and unique to Google’s intentions for Android. As you
write applications for an Android handset, you will use these concepts to guide the
design and implementation of the application:

Limited resources
Mobile phones today are very powerful handheld computers, but they are still
limited. The fundamental limitation of a mobile device is battery capacity. Every
clock tick of the processor, every refresh of memory, every backlit pixel on the
user’s screen takes energy from the battery. Battery size is limited, and users don’t
like frequent battery charging. As a result, the computing resources are limited—
clock rates are in the hundreds of MHz, memory is at best a few gigabytes, data
storage is at best a few tens of gigabytes. Throughout this book we will talk about
the mechanisms included in Android to optimize for these limited resources.

The Android Execution Environment | 5

http://www.apache.org/licenses/LICENSE-2.0.txt
http://developer.android.com
http://developer.android.com

Mobile mashups
In the desktop Internet world, mashups make it very easy to create new applications
by reusing the data and user interface elements provided by existing applications.
Google Maps is a great example: you can easily create a web-based application that
incorporates maps, satellite imagery, and traffic updates using just a few lines of
JavaScript on your own web page. Android extends that concept to the mobile
phone. In other mobile environments, applications are separate, and with the ex-
ception of browser-based applications, you are expected to code your applications
separately from the other applications that are running on the handset. In Android
you can easily create new applications that incorporate existing applications.
Chapter 13 focuses on these mobile mashups.

Interchangeable applications
In other mobile software environments, applications are coded to access data from
specific data providers. If you need to send an email from a Windows Mobile ap-
plication, for example, you code explicit references to Pocket Outlook’s email in-
terface, and send the email that way. But what if the user wants to use another
email client?

Android incorporates a fundamental mechanism (Intents) that is independent of
specific application implementations. In an Android application, you don’t say you
want to send email through a specific application; instead, you say you want to
send an email through whatever application is available. The operating system
takes care of figuring out what application can send emails, starts that application
if needed, and connects your request so the email can be sent. The user can sub-
stitute different browsers, different MP3 players, or different email clients at will,
and Android adapts automatically.

Components of an Android Application
Your Android applications will be built from four basic component types that are de-
fined by the Android architecture:

Activities
These are comparable to standalone utilities on desktop systems, such as office
applications. Activities are pieces of executable code that come and go in time,
instantiated by either the user or the operating system and running as long as they
are needed. They can interact with the user and request data or services from other
activities or services via queries or Intents (discussed in a moment).

Most of the executable code you write for Android will execute in the context of
an Activity. Activities usually correspond to display screens: each Activity shows
one screen to the user. When it is not actively running, an Activity can be killed by
the operating system to conserve memory.

6 | Chapter 1: Getting to Know Android

Services
These are analogous to services or daemons in desktop and server operating sys-
tems. They are executable pieces of code that usually run in the background from
the time of their instantiation until the mobile handset is shut down. They generally
don’t expose a user interface.

The classic example of a Service is an MP3 player that needs to keep playing queued
files, even while the user has gone on to use other applications. Your application
may need to implement Services to perform background tasks that persist without
a user interface.

Broadcast and Intent Receivers
These respond to requests for service from another application. A Broadcast
Receiver responds to a system-wide announcement of an event. These announce-
ments can come from Android itself (e.g., battery low) or from any program run-
ning on the system. An Activity or Service provides other applications with access
to its functionality by executing an Intent Receiver, a small piece of executable code
that responds to requests for data or services from other activities. The requesting
(client) activity issues an Intent, leaving it up to the Android framework to figure
out which application should receive and act on it.

Intents are one of the key architectural elements in Android that facilitate the cre-
ation of new applications from existing applications (mobile mashups). You will
use Intents in your application to interact with other applications and services that
provide information needed by your application. Intents and Intent Receivers are
covered in more detail in Chapter 13.

Content providers
These are created to share data with other activities or services. A content provider
uses a standard interface in the form of a URI to fulfill requests for data from other
applications that may not even know which content provider they are using. For
example, when an application issues a query for Contact data, it addresses the
query to a URI of the form:

content://contacts/people

The operating system looks to see which applications have registered themselves
as content providers for the given URI, and sends the request to the appropriate
application (starting the application if it is not already running). If there is more
than one content provider registered for the requested URI, the operating system
asks the user which one he wants to use.

An application doesn’t have to use all of the Android components, but a well-written
application will make use of the mechanisms provided, rather than reinventing func-
tionality or hardcoding references to other applications. URIs and Intents together al-
low Android to provide a very flexible user environment. Applications can be easily
added, deleted, and substituted, and the loose coupling of intents and URIs keeps
everything working together.

Components of an Android Application | 7

Android Activity Lifecycle
Android is designed around the unique requirements of mobile applications. In par-
ticular, Android recognizes that resources (memory and battery, for example) are limi-
ted on most mobile devices, and provides mechanisms to conserve those resources. The
mechanisms are evident in the Android Activity Lifecycle, which defines the states or
events that an activity goes through from the time it is created until it finishes running.
The lifecycle is shown diagrammatically in Figure 1-1.

Your activity monitors and reacts to these events by instantiating methods that override
the Activity class methods for each event:

onCreate
Called when your activity is first created. This is the place you normally create your
views, open any persistent datafiles your activity needs to use, and in general ini-
tialize your activity. When calling onCreate, the Android framework is passed a
Bundle object that contains any activity state saved from when the activity ran
before.

Start activity

User navigates
back to activity

Process is killed

Activity comes
to foreground

Activity no longer visible

NO

YES

Activity interacts
with user

Activity becomes
visible

Activity exits

onCreate()

onStart()

In foreground?

onResume()

onPause()

onStop()

onDestroy()

onRestart()

Figure 1-1. Android Activity lifecycle

8 | Chapter 1: Getting to Know Android

onStart
Called just before your activity becomes visible on the screen. Once onStart com-
pletes, if your activity can become the foreground activity on the screen, control
will transfer to onResume. If the activity cannot become the foreground activity for
some reason, control transfers to the onStop method.

onResume
Called right after onStart if your activity is the foreground activity on the screen.
At this point your activity is running and interacting with the user. You are receiving
keyboard and touch inputs, and the screen is displaying your user interface.
onResume is also called if your activity loses the foreground to another activity, and
that activity eventually exits, popping your activity back to the foreground. This is
where your activity would start (or resume) doing things that are needed to update
the user interface (receiving location updates or running an animation, for
example).

onPause
Called when Android is just about to resume a different activity, giving that activity
the foreground. At this point your activity will no longer have access to the screen,
so you should stop doing things that consume battery and CPU cycles unnecessa-
rily. If you are running an animation, no one is going to be able to see it, so you
might as well suspend it until you get the screen back. Your activity needs to take
advantage of this method to store any state that you will need in case your activity
gains the foreground again—and it is not guaranteed that your activity will resume.
If the mobile device you are running on runs out of memory, there is no virtual
memory on disk to use for expansion, so your activity may have to make way for
a system process that needs memory. Once you exit this method, Android may kill
your activity at any time without returning control to you.

onStop
Called when your activity is no longer visible, either because another activity has
taken the foreground or because your activity is being destroyed.

onDestroy
The last chance for your activity to do any processing before it is destroyed. Nor-
mally you’d get to this point because the activity is done and the framework called
its finish method. But as mentioned earlier, the method might be called because
Android has decided it needs the resources your activity is consuming.

It is important to take advantage of these methods to provide the best user experience
possible. This is the first place in this book we’ve discussed how programming for
mobile devices is different from programming for desktop devices, and there will be
many more such places as you go through later chapters. Your users will appreciate it
if you write your activities with the activity lifecycle in mind, and you will ultimately
benefit.

Android Activity Lifecycle | 9

Android Service Lifecycle
The lifecycle for a service is similar to that for an activity, but different in a few important
details:

onCreate and onStart differences
Services can be started when a client calls the Context.startService(Intent)
method. If the service isn’t already running, Android starts it and calls its
onCreate method followed by the onStart method. If the service is already running,
its onStart method is invoked again with the new intent. So it’s quite possible and
normal for a service’s onStart method to be called repeatedly in a single run of the
service.

onResume, onPause, and onStop are not needed
Recall that a service generally has no user interface, so there isn’t any need for the
onPause, onResume, or onStop methods. Whenever a service is running, it is always
in the background.

onBind
If a client needs a persistent connection to a service, it can call the Context.bind
Service method. This creates the service if it is not running, and calls onCreate but
not onStart. Instead, the onBind method is called with the client’s intent, and it
returns an IBind object that the client can use to make further calls to the service.
It’s quite normal for a service to have clients starting it and clients bound to it at
the same time.

onDestroy
As with an activity, the onDestroy method is called when the service is about to be
terminated. Android will terminate a service when there are no more clients starting
or bound to it. As with activities, Android may also terminate a service when
memory is getting low. If that happens, Android will attempt to restart the service
when the memory pressure passes, so if your service needs to store persistent in-
formation for that restart, it’s best to do so in the onStart method.

How This Book Fits Together
Android is a sophisticated platform whose parts all work together: drawing and layout,
inter-process communication and data storage, search and location. Introducing it in
pieces is a challenge, but we’ve entertained the conceit of introducing the complexities
of the platform in a linear order.

The platform is also so rich that we can’t hope to show you how to use everything you
want, or even a large subset of its capabilities. We expect you to consult the official
documentation while reading this book and trying the examples. You should also use
other online resources—but be careful about web pages or forum postings that have

10 | Chapter 1: Getting to Know Android

been around a while, because interfaces change. There is also a substantial amount of
misinformation out on the Web; we discovered scads of it while writing the book.

This book is written for experienced developers who want to quickly learn what they
need to know to build Android applications. The book is written with references to an
example application (MJAndroid, discussed in much more detail in the next chapter)
that you can freely download and reuse. The major topics covered in the book include:

New Android concepts
Android builds upon a lot of legacy technology (Java, Linux, and the Internet, just
to name a few), but it also introduces some new concepts needed to enable the
application environment.

Android development environment
We’ll show how to install the free, open source Android development environment
on your own system, and how to use that environment to develop, test, and debug
your own applications. You’ll not only learn the mechanics of using the system,
but also what’s going on behind the scenes, so you’ll have a better understanding
of how the whole system fits together.

Android user interface
The Android user interface elements are similar to things you’ve seen before, but
also different. We’ll show you what the principal elements are, how they’re used,
and what they look like on the screen. We’ll also show you the basic layout types
available for the Android screen.

Intents
Android makes it easy to leverage existing applications through the use of Intents.
For example, if you want to dial a phone number, you don’t have to do all the work
in your application, or even know what applications are available that know how
to dial. You can just ask Android to find you an installed application that knows
how to dial out, and pass it the string of numbers.

Location-based services and mapping
As you’d expect from a Google-sponsored environment, mapping and location are
major features of Android. You’ll see how easy it is to create sophisticated mapping
and location-based applications.

Persistent data
Android includes the SQLite database libraries and tools, which your application
can use to store persistent data. Content providers, which we’ve already intro-
duced, provide data to other applications. Using the libraries can be a little tricky,
but in Chapter 8 we’ll guide you through the creation of a database, and reading,
writing, and deleting data records.

Graphics
Your application has access to 2D and 3D graphics capabilities in Android. Ani-
mation and various advanced effects are also provided. This book will show you

How This Book Fits Together | 11

how to use those libraries so you can build a compelling user interface for your
application.

Communications
Android, even more than most smartphone operating systems, places great em-
phasis on communication—by voice, by text messaging, by instant messaging, and
by Internet. You’ll see how your application can take advantage of these capabilities
so your users can become part of a larger community of data and users.

The next three chapters, Chapters 2 through 4, set you up with a working application,
and will give you a sense of how the files and basic classes fit together. Chapter 5
empowers you to better understand what you’re doing and helps you debug your first
efforts.

The Android toolkit naturally comes with an enormous number of working code ex-
amples in its ApiDemos application. Unfortunately, its very size and sophistication
make it a formidable castle for novices to enter. Chapter 6 guides you through it.

A bit of experience with ApiDemos will convince you that you need some more back-
ground and tutorial help. In Chapter 7, we’ll show you how to sign and publish your
application, which you need to do in order to test it with Google Maps, even before
you’re ready to go public.

Chapter 8 presents tutorials on two data storage systems.

Chapter 9 presents location and mapping, which are key features that draw people to
mobile devices and which you’ll surely want to incorporate into your application.

We then turn to a critical part of any end-user application, graphics, in three
information-packed chapters, Chapters 10 through 12.

Chapter 13 takes another step into the complexity and unique power of Android, by
discussing how applications can offer functionality to other applications. This allows
for powerful mashups, which involve one program standing on the shoulders of other
programs.

Let’s not forget that Android runs on telephones. Chapters 14 and 15 wrap up the book
by showing you how to place and track phone calls.

There’s even more to Android than these features, of course, but programmers of all
stripes will find in this book what they need to create useful and efficient programs for
the Android platform.

12 | Chapter 1: Getting to Know Android

CHAPTER 2

Setting Up Your Android
Development Environment

Setting Up Your Development Environment
Android applications, like most mobile phone applications, are developed in a host-
target development environment. In other words, you develop your application on a
host computer (where resources are abundant) and download it to a target mobile
phone for testing and ultimate use. Applications can be tested and debugged either on
a real Android device or on an emulator. For most developers, using an emulator is
easier for initial development and debugging, followed by final testing on real devices.

To write your own Android mobile phone applications, you’ll first need to collect the
required tools and set up an appropriate development environment on your PC or Mac.
In this chapter we’ll collect the tools you need, download them and install them on
your computer, and write a sample application that will let you get the feel of writing
and running Android applications on an emulator. Linux, Windows, and OS X are all
supported development environments, and we’ll show you how to install the latest set
of tools on each. Then, we’ll show you any configuration you need to do after installing
the tools (setting PATH environment variables and the like), again for each of the three
operating systems. Finally, we’ll write a short little “Hello, Android” application that
demonstrates what needs to be done in order to get a generic application running.

The Android SDK supports several different integrated development environments
(IDEs). For this book we will focus on Eclipse because it is the IDE that is best integrated
with the SDK, and, hey, it’s free. No matter which operating system you are using, you
will need essentially the same set of tools:

• The Eclipse IDE

• Sun’s Java Development Kit (JDK)

• The Android Software Developer’s Kit (SDK)

• The Android Developer Tool (ADT), a special Eclipse plug-in

13

Since you’re probably going to develop on only one of the host operating systems, skip
to the appropriate section that pertains to your selected operating system.

Creating an Android Development Environment
The Android Software Development Kit supports Windows (XP and Vista), Linux
(tested on Ubuntu Dapper Drake, but any recent Linux distro should work), and Mac
OS X (10.4.8 or later, Intel platform only) as host development environments. Instal-
lation of the SDK is substantially the same for any of the operating systems, and most
of this description applies equally to all of them. Where the procedure differs, we will
clearly tell you what to do for each environment:

1. Install JDK: The Android SDK requires JDK version 5 or version 6. If you already
have one of those installed, skip to the next step. In particular, Mac OS X comes
with the JDK version 5 already installed, and many Linux distributions include a
JDK. If the JDK is not installed, go to http://java.sun.com/javase/downloads and
you’ll see a list of Java products to download. You want JDK 6 Update n for your
operating system, where n is 6 at the time of this writing.

Windows (XP and Vista)

• Select the distribution for “Windows Offline Installation, Multi-language.”

• Read, review, and accept Sun’s license for the JDK. (The license has become
very permissive, but if you have a problem with it, alternative free JDKs
exist.)

• Once the download is complete, a dialog box will ask you whether you want
to run the downloaded executable. When you select “Run,” the Windows
Installer will start up and lead you through a dialog to install the JDK on
your PC.

Linux

• Select the distribution for “Linux self-extracting file.”

• Read, review, and accept Sun’s license for the JDK. (The license has become
very permissive, but if you have a problem with it, alternative free JDKs
exist.)

• You will need to download the self-extracting binary to the location in
which you want to install the JDK on your filesystem. If that is a system-
wide directory (such as /usr/local), you will need root access. After the
file is downloaded, make it executable (chmod +x jdk-6version-linux-
i586.bin), and execute it. It will self-extract to create a tree of directories.

Mac OS X
Mac OS X comes with JDK version 5 already loaded.

14 | Chapter 2: Setting Up Your Android Development Environment

http://java.sun.com/javase/downloads

2. Install Eclipse: The Android SDK requires Eclipse version 3.3 or later. If you do
not have that version of Eclipse installed yet, you will need to go to http://www
.eclipse.org/downloads to get it, and you might as well get version 3.4 (also known
as Ganymede), since that package includes the required plug-ins mentioned in the
next step. You want the version of the Eclipse IDE labeled “Eclipse IDE for Java
Developers,” and obviously you want the version for your operating system. Eclipse
will ask you to select a mirror site, and will then start the download.

Windows (XP or Vista)
The Eclipse download comes as a big ZIP file that you install by extracting the
files to your favorite directory. For this book, we’ll assume that you extracted
to C:/eclipse. Eclipse is now installed, but it will not show up in your Start menu
of applications. You may want to create a Windows shortcut for C:/eclipse/
eclipse.exe and place it on your desktop, in your Start menu, or someplace else
where you can easily find it.

Linux and Mac OS X
Note that, as of this writing, the version of Eclipse installed if you request it
on Ubuntu Hardy Heron is 3.2.2, which does not contain all the plug-ins
needed for Android. The Eclipse download comes as a big tarball (.gz file) that
you install by extracting the files to your favorite directory. For this book, we’ll
assume that you extracted to /usr/lib/eclipse. The executable itself is located in
that directory and is named eclipse.

3. Check for required plug-ins: You can skip this step if you just downloaded a
current version of Eclipse as we recommended. If you are using a preinstalled ver-
sion of Eclipse, you need to make sure you have the Java Development Tool (JDT)
and Web Standard Tools (WST) plug-ins. You can easily check to see whether they
are installed by starting Eclipse and selecting menu options “Windows →
Preferences...”. The list of preferences should include one for “Java” and one for
either “XML” or “Web and XML.” If they aren’t on the list, the easiest thing to do
is reinstall Eclipse, as described in the previous step. Installing “Eclipse IDE for
Java Developers” will automatically get the needed plug-ins.

4. Install Android SDK: This is where you should start if you already have the right
versions of Eclipse and the JDK loaded. The Android SDK is distributed through
Google’s Android site, http://developer.android.com/sdk/1.1_r1/index.html. You
will need to read, review, and accept the terms of the license to proceed. When you
get to the list of downloads, you will see a table of distributions. Select the one for
your operating system (XP and Vista use the same distribution). The package (file)
names include the release number. For example, as this is written, the latest
version of the SDK is 1.1_r1, so the filename for Windows is android-sdk-
windows-1.1_r1.zip.

Setting Up Your Development Environment | 15

http://www.eclipse.org/downloads
http://www.eclipse.org/downloads
http://developer.android.com/sdk/1.1_r1/index.html

For versions 3.3 and later of Eclipse, the Android download site provides directions
about how to install the plug-in through Eclipse’s software updates utility. If you’re
using Eclipse 3.2 or the software update technique doesn’t work for you, download
the SDK from the Android site and install it using instructions in the next
paragraph.

The file you download is another archive file, as with Eclipse: a ZIP file on Win-
dows, a tar-zipped file for Linux and MacOS X. Do the same thing as for Eclipse:
extract the archive file to a directory where you want to install Android, and make
a note of the directory name (you’ll need it in step 6). The extraction will create a
directory tree containing a bunch of subdirectories, including one called tools.

5. Update the environment variables: To make it easier to launch the Android
tools, add the tools directory to your path.

• On Windows XP, click on Start, then right-click on My Computer. In the pop-
up menu, click on Properties. In the resulting System Properties dialog box,
select the Advanced tab. Near the bottom of the Advanced tab is a button, “En-
vironment Variables,” that takes you to an Environment Variables dialog. User
environment variables are listed in the top half of the box, and System environ-
ment variables in the bottom half. Scroll down the list of System environment
variables until you find “Path”; select it, and click the “Edit” button. Now you
will be in an Edit System Variable dialog that allows you to change the envi-
ronment variable “Path.” Add the full path of the tools directory to the end of
the existing Path variable and click “OK.” You should now see the new version
of the variable in the displayed list. Click “OK” and then “OK” again to exit the
dialog boxes.

• On Windows Vista, click on the Microsoft “flag” in the lower left of the desktop,
then right-click on Computer. At the top of the resulting display, just below the
menu bar, click on “System Properties.” In the column on the left of the resulting
box, click on “Advanced system settings.” Vista will warn you with a dialog box
that says “Windows needs your permission to continue”; click “Continue.”
Near the bottom of the System Properties box is a button labeled “Environment
Variables” that takes you to an Environment Variables dialog. User environment
variables are listed in the top half of the box, and System environment variables
in the bottom half. Scroll down the list of System environment variables until
you find “Path”; select it, and click the “Edit” button. Now you will be in an
Edit System Variable dialog that allows you to change the environment variable
“Path.” Add the full path of the tools directory to the end of the existing Path
variable, and click “OK.” You should now see the new version of the variable
in the displayed list. Click “OK” and then “OK” again to exit the dialog boxes.

• On Linux, the PATH environment variable can be defined in your ~/.bashrc
~/.bash_profile file. If you have either of those files, use a text editor such as
gedit, vi, or Emacs to open the file and look for a line that exports the PATH

16 | Chapter 2: Setting Up Your Android Development Environment

variable. If you find such a line, edit it to add the full path of the tools directory
to the path. If there is no such line, you can add a line like this:

export PATH=${PATH}:your_sdk_dir/tools

where you put the full path in place of your_sdk_dir.

• On Mac OS X, look for a file named .bash_profile in your home directory (note
the initial dot in the filename). If there is one, use an editor to open the file and
look for a line that exports the PATH variable. If you find such a line, edit it to
add the full path of the tools directory to the path. If there is no such line, you
can add a line like this:

export PATH=${PATH}:your_sdk_dir/tools

where you put the full path in place of your_sdk_dir.

6. Install the Android plug-in (ADT): Throughout this book, we will make use of
the Android Development Tool plug-in that Google supplies for use in building
Android applications. The plug-in is installed in much the same way as any other
Eclipse plug-in:

a. Start Eclipse, if it’s not already running.

b. From the menu bar, select “Help → Software Updates → Find and Install...”.

c. In the Install/Update dialog, select “Search for new features to install” and
click on “Next.”

d. In the Install dialog, click on “New Remote Site.” A “New Update Site” dialog
pops up. Enter a name for the plug-in (“Android Plugin” will do), and the URL
for updates: https://dl-ssl.google.com/android/eclipse. Click “OK.”

e. The new site should now appear in the list of sites on the Install dialog. Click
“Finish.”

f. In the Search Results dialog, select the checkbox for “Android Plugin →
Developer Tools” and click “Next.”

g. The license agreement for the plug-in appears. Read it, and if you agree, select
“Accept terms of the license agreement” and click “Next.” Click “Finish.”

h. You will get a warning that the plug-in is not signed. Choose to install it anyway
by clicking “Install All.”

i. Restart Eclipse.

j. After Eclipse restarts, you need to tell it where the SDK is located. From the
menu bar, select “Window → Preferences.” In the Preferences dialog, select
“Android” in the left column.

k. Use the “Browse” button to navigate to the place you installed the Android
SDK, and click on “Apply,” then on “OK.”

Setting Up Your Development Environment | 17

https://dl-ssl.google.com/android/eclipse

Congratulations—you have installed a complete Android development environment
without spending a penny. As you’ll see in this and subsequent chapters, the environ-
ment includes a very sophisticated set of tools to make Android programming easier,
including:

• An Integrated Development Environment based on Eclipse, arguably the premier
IDE for Java development. Eclipse itself brings many valuable development fea-
tures. Google and OHA have taken advantage of Eclipse’s extensibility to provide
features customized for Android, including debugging capabilities that are tuned
to the needs of mobile application developers like you.

• A Java development environment and Dalvik virtual machine that build on Sun’s
JDK foundation to provide a very sophisticated programming environment for
your applications.

• A complete mobile phone emulator that allows you to test your applications with-
out having to download them to a target mobile phone. The emulator includes
features for testing your application under different mobile phone communication
conditions (fading, dropped connections, etc.).

• Test tools, such as Traceview, which allow you to tune your application to take
best advantage of the limited resources available on a mobile phone.

Hello, Android
So enough downloading; let’s write a program. A “Hello World!” program is tradi-
tional, and we will start with something similar to demonstrate what you need to do
to create, build, and test an Android application. We won’t explore much of the An-
droid API for this program—that’s left for the following chapters—but here we’ll get
a taste for the development environment and the steps you go through to create an
application for Android.

Where We’re Going
There isn’t much functionality in this program. We just want to display some text on
the Android emulator window that says “Hello Android!” (see Figure 2-1).

Starting a New Android Application: HelloWorld
Several components are needed to build an Android application. Fortunately, the
Eclipse IDE with the Android plug-in automates a lot of the work needed to create and
maintain these components. We will start by using the IDE to create a project for our
application. Start up Eclipse and select “File → New → Project...” from the menu bar
(be sure to select “Project...”, not “Java Project”). You’ll see a list of project types,
similar to the menu in Figure 2-2.

18 | Chapter 2: Setting Up Your Android Development Environment

Select “Android Project” and click “Next” to get the “New Android Project” dialog box
(Figure 2-3).

We’ll use “HelloWorld” as the name for both the Project and the Application. You
don’t need to change the button or checkbox selections, and we’ll use the package name
com.oreilly.helloworld as shown.

Every Android application has to have at least one Activity (an executable that usually
has a user interface), so let’s say we’re going to include an Activity called Hello
WorldActivity, as shown in the dialog box. Click “Finish,” and the Android Software
Development Kit does a number of things for you, to make your life easier as a

Figure 2-1. “Hello Android” screenshot

Figure 2-2. Eclipse New Project menu

Hello, Android | 19

developer. In Figure 2-4, I’ve expanded the tree in the Package Explorer window to
show some of the files and directories that the Android SDK created.

The Android SDK created a HelloWorld directory in the default Eclipse workspace for
your project. It also created subdirectories for your source files (.src), references to the
Android Library, assets, resources (.res), and a manifest file (AndroidManifest.xml). In
each of the subdirectories it created another level of subdirectories as appropriate. Let’s
take a quick look at them:

Sources (under src)

• Contains a directory structure that corresponds to the package name you gave
for your application: in this case, com.android.helloworld.

• Contains a Java template for the Activity you indicated was in the application
(HelloWorldActivity) and may contain a directory of resource references
(R.java). R.java is actually generated by the Android SDK the first time you

Figure 2-3. Eclipse New Android Project dialog

20 | Chapter 2: Setting Up Your Android Development Environment

compile your application; it contains the Java version of all the resources you
define in the res directory (covered later). We’ll come back to R.java later.

Figure 2-4. Eclipse project listing after creation of the HelloWorld project

Hello, Android | 21

Android Library
This is just what it says. If you like, you can expand the android.jar tree and see
the names of the modules included in the library. This is where your application
will go for Android library references.

assets
Files you want to bundle with your application. We won’t have any for
HelloWorld.

Resources (under res)

• Drawable resources are any images, bitmaps, etc., that you need for your ap-
plication. For HelloWorld, the Android SDK has supplied us with the default
Android icon, and that’s all we’ll need.

• Layout resources tell Android how to arrange items on the screen when the
application runs. These resources are XML files that give you quite a bit of
freedom in laying out the screen for different purposes. For HelloWorld, we’ll
just use the defaults generated by the Android SDK.

• Values are constants, strings, etc., available for use by your application. Keeping
them outside the sources makes it easier to customize the application, such as
adapting it for different languages.

Manifest (AndroidManifest.xml)
This is another XML file that tells the Android build system what it needs to know
to build and package your application so it can be installed on an Android phone
or the emulator. This file has its own specialized editor, which we’ll describe when
we get to more complicated applications.

Writing HelloWorld
In the Eclipse Package Explorer window, double-click on HelloWorldActivity.java.
This opens the source file of that name in the center window, ready for editing:

package com.oreilly.helloworld;

import android.app.Activity;
import android.os.Bundle;

public class HelloWorldActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

22 | Chapter 2: Setting Up Your Android Development Environment

Looking quickly at the template code that the Android SDK has provided for us, we
can note several things:

• The Android SDK has included the package reference we asked for, which is con-
sistent with the directory structure it created.

• It has also created a (collapsed) set of imports for the library references it knows
we need.

• It created a class definition for the Activity we said we wanted (Hello
WorldActivity), including a method called OnCreate.

For the moment, don’t worry about the parameter passed into OnCreate. The
savedInstanceState Bundle is a way of passing data between activities and storing
data between instantiations of the same Activity. We won’t need to use this for
HelloWorld.

• One special line of code has been included in OnCreate:

setContentView (R.layout.main);

Remember that Android uses layouts to define screen layouts on the target, and
that main.xml was the name of the default layout file that the Android SDK created
for us under .res/layout. The R.java file is generated automatically and contains
Java references for each of the resources under .res. You will never need to edit the
R.java file by hand; the Android SDK takes care of it as you add, change, or delete
resources.

Again in the Eclipse Package Explorer window, double-click on main.xml and you will
see the default layout screen in the center window. There are two tabs at the bottom
of the panel that say “Layout” and “main.xml”. Click on the one that says “main.xml”
to bring up the code version:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
</LinearLayout>

Again, let’s look at the key features of this template code:

• Like any other XML file, this one starts with a reference to the XML version and
encoding used.

• LinearLayout is one of the screen layout formats provided by the Android SDK.
There are several others, which can be combined hierarchically to create very

Hello, Android | 23

complex screen layouts. For our purposes, a simple linear layout is fine. More
Layout types are covered later in the book in Chapter 11.

— The LinearLayout definition:

xmlns:android="http://schemas.android.com/apk/res/android"

identifies the XML schema being used.

— This code:

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

defines an orientation, width, and height for the entire scope of the layout.

• TextView describes an area where text can be displayed and edited. It resembles
the text boxes you may have encountered when programming in other graphical
environments.

— Within the TextView definition:

android:layout_width="fill_parent"
android:layout_height="wrap_content"

define a width and height for the TextView box.

— This code:

android:text="@string/hello"

provides some text to display in the TextView. The actual string is defined in a
separate file, res/values/strings.xml. If we open that file (again by clicking on it
in the Package Explorer), we see a specialized string editor added by ADT. If
you select “hello (String)” by clicking on it, you’ll see the current value for that
string. By a stroke of luck, the Android SDK has already included text that is
close to what we wanted to display anyway. Just to show them who’s boss,
change the value of the String hello to say “Hello Android!”, or something else
equally clever.

Save the Project either from the Eclipse File menu (File → Save) or by clicking on the
disk icon in the menu bar.

Believe it or not, we’re done. We don’t have to write a single line of Java to create this
application.

Running HelloWorld
From the Eclipse menu bar, select Run → Run. A “Run As” dialog box will pop up.
Select “Android Application” from the list, which displays the dialog shown in Fig-
ure 2-5.

24 | Chapter 2: Setting Up Your Android Development Environment

A command window will pop up, followed quickly by an emulator window that looks
just like a mobile phone. The emulated phone will then go through its boot sequence,
which takes a few minutes (relax; if anything goes wrong, it will tell you). After a few
minutes you should see the screen shown in Figure 2-6.

Figure 2-6. First try at HelloAndroid

Notice anything different between that screen image and the one we showed in Fig-
ure 2-1? The application prints out “Hello Android!”, or whatever you wrote into the
android:text line earlier, but it also displays the title of the application as “Hello
World”. Let’s change the title to match our creative change to the application text.

In the Package Explorer in the left panel of the Eclipse workbench, reopen the
strings.xml file (the one where we found the String hello before). This will open the file
in the editing window. The intent of this file is to give you a place to define strings that
will be used by your application, without actually embedding them in the Java source
code. The other string that’s defined here is app_name. To make things consistent,
change the definition of app_name to HelloAndroid, as shown in Figure 2-7.

Figure 2-5. Eclipse Application Type selection

Hello, Android | 25

Now when we run the application, we get a screen that looks just like what we set out
to do, as shown previously in Figure 2-1.

Congratulations! You’ve just created your first Android program by doing nothing
more than changing the text in one line of code. There are much greater challenges
ahead.

Figure 2-7. HelloWorld String editing

26 | Chapter 2: Setting Up Your Android Development Environment

CHAPTER 3

Using the Android Development
Environment for Real Applications

MicroJobs: This Book’s Main Sample Application
We want to take a look at applications that are more complex than “Hello, Android,”
and that’s what we’ll do in this chapter. Based on the theory that it’s often easiest to
explain things through an example, we’ll take an in-depth look at a more complex
application, called MicroJobs. Some of the application’s code modules are named
MJAndroid, so we’ll also use that name for the code associated with MicroJobs.

We’ll first take a look at what we want the MicroJobs application to do, then we’ll
quickly get into the code itself. After looking at the structure of the application, we’ll
describe in detail how to build the application and how to get it running on the emu-
lator. Finally, we’ll take a look at some helpful debug hints in case you’re developing
a similar application and it doesn’t start up. The reasons are not always obvious in the
Android environment.

Android and Social Networking
One of the great promises of Android mobile phones is their ability to run applications
that enhance opportunities for social networking between users. This promise echoes
the reality of the Internet. The first generation of Internet applications were about user
access to information, and many of those applications have been very popular. The
second wave of Internet applications has been about connecting users to each other.
Applications such as Facebook, YouTube, and many others enhance our ability to
connect with people of similar interests, and allow the application’s users to provide
some or all of the content that makes the application what it is. Android has the po-
tential to take that concept and add a new dimension: mobility. It’s expected that a
whole new generation of applications will be built for users of mobile devices: social
networking applications that are easy to use while walking down the street; applications

27

that are aware of the user’s location; applications that allow the easy sharing of content-
rich information, such as pictures and videos.

As mentioned in the previous chapter, we are going to study just such an application
as an example of Android application development. The code is available for you to
download from the book’s website (http://www.oreilly.com/catalog/9780596521479),
and is based on an actual entry in the first round of the Android Developer Challenge,
sponsored by Google. The application is an example of a class of applications known
as “friend finders” because that’s the central idea.

In the case of the MicroJobs application, instead of finding friends, the user is trying
to locate a temporary job in the vicinity, so she can work for a few hours and make
some money. The premise is that employers looking for temporary help have entered
available jobs, descriptions, hours, and offered wages in a web-based database that is
accessible from Android mobile phones. Anyone looking for a few hours’ work can use
the MicroJobs application to access that database, look for jobs in the immediate area,
communicate with friends about potential employers and potential jobs, and call the
employer directly if she is interested in the position. For our purposes here, we won’t
create an online service; we’ll just have some canned data on the phone. The application
has a number of features that extend that central idea in ways that are unique to mobile
handsets:

Mapping
The Android mobile phone environment provides very rich support for dynamic,
interactive maps, and we’re going to take full advantage of its capabilities. You’ll
see that with very little code, we’ll be able to show dynamic maps of our local
neighborhood, getting location updates from the internal GPS to automatically
scroll the map as we move. We’ll be able to scroll the map in two directions, zoom
in and out, and even switch to satellite views.

Finding friends and events
A graphic overlay on the map will show us where jobs are placed in the area, and
will allow us to get more information about a job by just touching its symbol on
the map. We will access Android’s Contact Manager application to get address
information for our friends (telephone numbers, instant messaging addresses, etc.),
and access the MicroJobs database to get more information about posted jobs.

Instant messaging
When we find friends we want to chat with, we will be able to contact them via
instant messages (IMs), by trading SMS messages with our friends’ mobile phones.

Talking with friends or employers
If IMing is too slow or cumbersome, we’ll be able to easily place a cellular call to
our friends, or call the employer offering a job.

28 | Chapter 3: Using the Android Development Environment for Real Applications

http://www.oreilly.com/catalog/9780596521479

Browsing the Web
Most employers have an associated website that provides more detailed informa-
tion. We’ll be able to select an employer off a list or off the map and quickly zero
in on their website to find out, for example, what the place looks like.

This is a fun application that could easily be developed further into a full-blown service,
but our intent in this book is to show you just how easy it is to develop and combine
these powerful capabilities in your own application. The complete source code for the
application is available to you on the book’s website, and we will refer to it frequently
throughout this book. Although it’s not absolutely required in order to understand the
material in the book, you are strongly encouraged to download the source to your own
computer. That way, you’ll have it readily available for reference, and it will be easy to
copy sections of code and paste them into your own applications as you move on.

Figure 3-1 shows the screen displayed by MJAndroid when you first run it. It’s a map
of your local area, overlaid with a few buttons and pins.

Figure 3-1. MJAndroid opening screenshot

Android and Social Networking | 29

Downloading the MJAndroid Code
The MJAndroid application source code and project files are available from the O’Reilly
website, at http://www.oreilly.com/catalog/9780596521479. To download it to your
development system, use a browser to navigate to the link given, and select “Download
MJAndroid.” Your operating system (Windows, Linux, or OS X) will ask you to con-
firm that you want the download to happen, and ask you where to put the downloaded
files. It doesn’t matter where you put the downloaded, compressed files, but you want
to extract the uncompressed files into the directory that Eclipse uses as your default
workspace, to make it easy to load the project. The default place is a folder called
workspace under the eclipse directory that you created when you installed Eclipse. If
you can’t remember where that is, start Eclipse, go to File → Switch Workspace, and it
will display the location of the current workspace directory. Expand the compressed
files into that directory, and be sure “use directories” is checked in the decompression
dialog, so the correct folders will be created and the files written to them.

To import the MJAndroid project into Eclipse, go to File → Import..., and you’ll see a
Select dialog list of possible import types. Click on “Existing Projects into Workspace,”
and use the Browse button to find the directory where you just expanded MJAndroid.
Eclipse will import the project, and it should appear in the Project Explorer pane.

A Brief Tour of the MJAndroid Code
MJAndroid is a relatively simple application, despite the capabilities it gives its users.
This section will give you an overview of the code and resource modules, tell you where
they are located in the directory structure, and provide a glimpse of what each com-
ponent does. You may want to refer to this section in the future when you’re trying to
find example code for a particular function and want to locate it in the MJAndroid code
tree. MJAndroid uses a directory structure that is derived directly from the standard
Android application directory structure, so this will also serve as a guide to finding code
in other application source trees.

The Project Root Folder (MJAndroid)
If you use Eclipse’s Package Explorer to look at the MJAndroid project, you will see a
set of folders and files. It turns out all of these were originally created by Eclipse and
the Android Development Tool, and similar folders and files are created for any
Android application. Let’s see what they do:

src folder
src is short for Source, and this is where Eclipse and ADT expect to find all of the
Java source files in your application. Almost all of the work you do to create an
Android application is done in this folder and the res folder. In the next section,
we will take a more detailed look at how the src folder is structured for MJAndroid.

30 | Chapter 3: Using the Android Development Environment for Real Applications

http://www.oreilly.com/catalog/9780596521479

Android Library
This is just what it says: a pointer to the library of Android class files that Eclipse
links to in order to provide the Android APIs. You don’t need to do anything with
this entry, but if you ever need to confirm that a particular Android class is (still)
there, this is where you would look.

assets folder
This folder is useful for holding assets that are used by the application: fonts, ex-
ternal JAR files, and so on. For this book and MJAndroid, we don’t have any assets,
so we will not be using the assets folder.

doc folder
Short for documentation, this is where you can put documentation for a project.
For MJAndroid, web pages that describe the Loco project are stored in this folder.

res folder
res is short for resources, and this is where Eclipse and ADT expect to find the
resources for your application. Resources include most of the XML files that define
the layout of your application, any image files (icons, pictures that are used in your
layout, sprites, etc.)—just about everything that isn’t part of a Java source file.

AndroidManifest.xml file
This file is created by ADT when you create a new Android project. As the extension
suggests, it is an XML file, and it contains a wealth of information about your
application: what the activities, services, and intents are, which one starts first,
which permissions your application needs from the operating system (for restricted
functions such as getting location or making a phone call), and a lot of other in-
formation. This file is so important that ADT provides a special editor to maintain
it. It’s just an XML file, so you could always edit it with a text editor, but you will
see later that the specialized editor makes everything a lot easier.

Eclipse also creates two other files and another directory at the same directory level
(the root directory of the MJAndroid project) that are not shown by Package Explorer.
The .classpath file is used by Eclipse to keep track of the location of standard Java classes
and libraries. Eclipse uses the .project file to store information about the project. You
will never need to touch either of these files directly, so Eclipse doesn’t bother you with
them in Package Explorer. The bin directory is where Eclipse puts the compiled class
files for each of your Java source files (the ones in src). You can see all of these files if
you list the directory of the root folder, but you don’t really need to pay any attention
to them, because Eclipse will do it all for you.

The Source Folder (src)
The package name for MJAndroid is com.microjobsinc.mjandroid. Eclipse lays out the
equivalent directory structure, just as it would for any Java project, and shows you the
whole thing when you open src. In addition to these package folders, there is a folder
named for the package that contains all the Java files for the project. These include:

A Brief Tour of the MJAndroid Code | 31

MicroJobs.java
The main source file for the application. It designates the Activity that starts first,
displays the map that is the centerpiece of the application, and calls other Activities
or Services as necessary to implement different features in the user interface.

MicroJobsDatabase.java
A database helper that provides easy access to the local MJAndroid database. This
is where all the employer, user, and job information is stored, using SQLite.

AddJob.java and EditJob.java
Part of the database portion of MJAndroid. These provide screens through which
the user can add or edit job entries in the database.

MicroJobsDetail.java
The Activity that displays all of the detail information about a particular job
opportunity.

MicroJobsEmpDetail.java
The Activity that displays information about an employer, including name, ad-
dress, reputation, email address, phone number, etc.

MicroJobsList.java
The Activity that displays a list of jobs (as opposed to the map view in
MicroJobs.java). It shows a simple list containing Employer and Job entries, and
allows the user to sort the list by either field and call up specifics of the job or
employer by touching the name on the list.

R.java
This file is created automatically by Eclipse and the ADT to contain Java references
for all the resources that are defined in the res folder (see the next section). You
should never have to edit this file by hand, as it is maintained for you as you add
or edit resources. Take a look, though, just to see how resources are defined for
later use in the other Java source files.

The Resource Folder (res)
The res folder contains three folders, and another pointer to the same Android
Manifest.xml file that shows up in the root directory:

drawable
As you might suspect, this contains all the drawable images that MJAndroid will
use: any JPEG or PNG or GIF files or bitmaps.

layout
As with many modern application environments, Android allows you to separate
what is displayed by an Activity from how it is displayed. This directory contains
XML files that describe the “how”; in other words, they are the layout files for each
Activity in the application. When a program runs, Android applies the rules in
these files to create the visible layout, a process known as “inflating.”

32 | Chapter 3: Using the Android Development Environment for Real Applications

values
Good programming practice calls for the separation of data that does not directly
affect the operation of an application, making it a lot easier to do things like trans-
lation to foreign languages, theming, etc. We aren’t going to be super strict about
this in MJAndroid, but we will at least put all of the obvious user-visible text into
a file called strings.xml. You’ll see how easy it is to retrieve these for use in the
actual Android Activity source code.

First Steps: Building and Running the MicroJobs Application
So now that we know a bit about which files are located in which folders, what happens
when we ask Android to run the MJAndroid application? And for that matter, how do
we ask Android to run the application? Let’s take a closer look at the Android SDK
environment and the views and commands available to us for running and debugging
any application.

A Very Short Tour of the Android SDK/Eclipse IDE
The Android SDK provides three “perspectives” for working with Android projects and
applications. If you’re new to Eclipse, a perspective is a collection of Eclipse views that
provides a particular viewpoint of an application. Eclipse and the Android SDK have
preassembled sets of views that developers have found useful, and you can switch be-
tween those views, either by selecting one from the Window menu or by using the icons
in the upper-right corner of the Eclipse window. You are also free to customize the
perspectives, but in this book we will assume you use the standard ones provided:

Java
This is the default perspective, launched by Eclipse when you first say that you
want to view the workspace. It includes:

Package Explorer
Used for viewing folders and selecting files

Source Editor
Used for editing Java and XML source files

Tabbed Views
Contains a set of useful views, accessed by tabs:

• Problems, which lists errors that Eclipse and the Android SDK find in the
application

• Javadoc, which extracts and displays Javadoc documentation from the
application

• Declaration, which makes it easy to find the declaration for any variable in
the code

First Steps: Building and Running the MicroJobs Application | 33

• Console, which shows the console terminal output from either the emulator
or the Android phone

• Search, which is used to search for results

• Progress, which displays progress as an application is launched and runs

Debug
This perspective is primarily for debugging the application, obviously. If you select
Debug from the Run menu, Eclipse switches automatically to this perspective,
providing you with views that are useful for debugging:

Debug
A view of the application call stack, showing you how you got to the current
debug point

Source View
This shows you the current source location in the running (or stopped)
application

Console and Tasks Views
This contains the console terminal (as in the Java perspective), and a window
where development tasks can be recorded and tracked

Variables, Breakpoints, and Expressions
This is where you can view current variable values, view breakpoints, and
evaluate expressions while debugging

Outline
This shows you an outline of the current activity being executed: the classes
declared, and the instances and methods defined

DDMS
This perspective, which stands for Dalvik Debug Monitor Service, is unique to
Android. It provides Android-specific debug information, including:

Devices
This shows you what devices (emulated or hardware) are available to run your
applications.

Emulator Control
This is where you can adjust parameters that define how the telephony and
location emulators work. When running on the emulator, we’ll use this to
manually send location updates to the location provider.

LogCat
This is a view of the very powerful logging facility available under Android,
which allows you to see everything going on in the target system, and to filter
out the information you really care about.

34 | Chapter 3: Using the Android Development Environment for Real Applications

Threads, Heap, and File Explorer
This is a tabbed set of views where you can follow the running threads in the
application, see how the heap is being used, and select files from the folder
hierarchy.

Loading and Starting the Application
Running MJAndroid from the SDK is complicated by the fact that the application uses
a MapView. Android requires a special Map API Keywhenever you use a MapView,
and the key is tied to your particular development machine. You’ll learn all about this
in Chapter 7, but right now the easiest way for you to run MJAndroid is simply to install
the .apk file in the emulator.

Running the MJAndroid Code
If you downloaded the MJAndroid code and tried to use the Android SDK to compile
it and run it, it probably didn’t work. The most likely reason is that you didn’t change
the Map API Key to match the key needed by your installation of the SDK. To run an
application such as MJAndroid that uses the MapView, you need a Map API Key. The
easiest way to run the application is to install the binary we provided from the .apk file
in the book’s examples: MJAndroid-1.0.0.apk. You can install the file into the emulator
by simply starting the emulator (if it’s not already running) from a terminal window:

$ emulator

You’ll then need to open another terminal window to enter the installation command:

$ adb install MJAndroid-1.0.0.apk

Once MJAndroid is installed on your emulator, you can launch it from the Application
Launcher, just like any other application.

If you want to be able to make modifications to the code and build and run under the
SDK, read Chapter 7 to learn how to get the Map API Key you need.

You are probably already in the Java perspective, but if not, select it now. If you loaded
the MJAndroid application into your Eclipse workspace folder as described earlier, you
should see it in the Package Explorer. If you now right-click on the MJAndroid entry,
you get a long menu of options. Select Open Project, a little over halfway down the list,
and Eclipse will open the MJAndroid project and allow you to see its contents.

If we didn’t have to deal with the Map API Key issue, starting the application would
be as easy as selecting Run from the menu of the same name. Eclipse shows a dialog
box (labeled “Run As”) that asks how you want to run the application. You will always
select Android Application from the top of the list.

First Steps: Building and Running the MicroJobs Application | 35

At this point, the Android SDK will either select the target hardware you identified or
start the emulator as the target. It will automatically load your application on the target
and attempt to start it. In the case of MJAndroid, you should see the opening screen,
shown earlier in Figure 3-1.

Digging a Little Deeper: What Can Go Wrong?
As you are developing your application, at some point you will try to run it, as just
described, and it won’t work. You’ll either get an unexpected result or you’ll get an
error on the target screen that may be less than informative. Let’s spend a little time
looking at what the Android SDK does to get an application running, and what might
go wrong.

As you know, Android applications run under a virtual machine called Dalvik. When
you selected “Run” in the previous section, tools in the Android SDK saw that there
was not a compiled version of MJAndroid available to run. They first took all the layout
and variable information that was coded into XML files and converted it into Java
source code (in the R.java folder), and then compiled all the Java source code into Java
bytecode files (.class files). A translator converted the Java bytecodes into Dalvik byte-
code files (.dex files). The Dalvik modules were combined with other information about
the application, including the manifest file AndroidManifest.xml, and packaged into an
Android package (or .apk) file. In the case of the MJAndroid application, this file is
MJAndroid.apk, located in .../MJAndroid/bin. An Android package is what the target
receives to load and start the application running. A lot of the startup information is in
the AndroidManifest.xml file, so let’s take a closer look at it.

When you double-click the AndroidManifest.xml listing in the Package Explorer, the
Android SDK starts the Android Manifest editor in the middle pane of the Java per-
spective, and loads the file, as shown in Figure 3-2.

As you see, there are five tabs at the bottom of the editor pane, which give you five
different views of the manifest file:

Overview
This is the view presented by default (if the file hasn’t been opened before). It shows
the package name for the application and shared user ID information (for use when
multiple applications have to share a common user ID), presents some options for
exporting and signing your application, and provides links to each of the tabs de-
scribed next.

Application
This view provides access to a lot of the parameters that can be set for an applica-
tion. Most of these are either self-explanatory or are not used in an application like
MJAndroid. Two areas of interest are:

• Icon, which tells Android where to find a drawable icon to use for the application
on the target.

36 | Chapter 3: Using the Android Development Environment for Real Applications

• Application Nodes, which identifies the activities, services, and providers in the
application. There are a number of things worth noting in this section.

Uses Library
For MJAndroid, we will use the MapActivity to display maps. That class is
not part of the core Android libraries, so we call out here that we need access
to the additional library com.google.android.maps.

Activity Attributes
Click on the little triangle to the left of MicroJobs (Activity) to see the intent
filters attached to that activity. If you recall, activities in Android are run
when their intent filters satisfy an intent that was expressed by some already
running application. In this case we see two filters for MicroJobs:

<action android:name="android.intent.action.MAIN" />
This tells the Android application launcher that this activity is the one
to be started first for MJAndroid.

<category android:name="android.intent.category.LAUNCHER" />
This tells Android that the icon for this activity and application is to be
displayed on the menu of launchable applications.

Figure 3-2. Android Manifest editor

First Steps: Building and Running the MicroJobs Application | 37

We’ll talk about the intent filters assigned to the other activities as we get
to their use in the code.

Permissions
Android controls what applications are allowed to do by requiring that they ask
for permission to perform critical actions. When the application is installed on a
real device, the user can choose whether to allow the requested permissions and
proceed with installation, or to reject installation (in the emulator environment, it
is assumed all permission requests are granted). It is important to include only the
permissions needed by your application; you don’t want to ask the user for per-
missions that you don’t need. For MJAndroid, we’ll need the permissions shown
in this tab:

• <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"
/> allows us to use fine-grained location providers, such as GPS.

• <uses-permission android:name="android.permission.ACCESS_LOCA
TION_EXTRA_COMMANDS" /> allows us to access additional location commands.

• <uses-permission android:name="android.permission.ACCESS_MOCK_LOCATION"
/> allows the creation of mock location providers.

• <uses-permission android:name="android.permission.INTERNET" /> allows us
to access the Internet.

• <uses-permission android:name="android.permission.CALL_PHONE" /> allows
the application to place telephone calls.

Instrumentation
Android allows developers to replace Dalvik classes with substitute classes when
running in the emulator environment. The intent is to allow one to better instru-
ment particularly tricky code. We won’t be using this feature in this book, but you
can search for “Instrumentation” in the Android documentation to find out more.

AndroidManifest.xml
This view shows the actual XML file that results from all the choices made in the
other views. If you are already comfortable with XML, you may prefer to edit the
file directly in this view, rather than using the others. Be careful, though, because
Android is very choosy about seeing the right tags in the right places, and doesn’t
always give you an error message indicating what, exactly, is wrong. The editor
used in this view does XML syntax checking for you, but it doesn’t know anything
about the semantics of the various XML tags defined by Android. It’s interesting
to make changes in the other views and see their effect on the actual XML file by
looking at this view.

So there is a lot of information in the AndroidManifest.xml file, and the system uses that
information when launching the application. In the next chapter, we’ll see what actually
goes on inside the application as it starts up.

38 | Chapter 3: Using the Android Development Environment for Real Applications

Running an Application on the T-Mobile Phone
Emulators are great development timesavers, and the QEMU emulator used by Android
runs particularly well. You can probably debug 95% of your application just using the
emulator. But an Android application doesn’t have much raison d’être until it gets the
chance to run on real phones. Luckily, Android makes it easy for you to try your ap-
plication on one. As this is written, the T-Mobile G1 phone is the only Android phone
on the market, so we’ll give instructions for using it with the Android SDK. Future
Android phones should be similar.

Enable USB debugging on your phone

Before you connect your T-Mobile G1 to the host, go to the Desktop screen on the
phone, and push the Menu button. One of the menu options is Settings. Touch it to
select, and you will be taken to the Settings dialog for the phone, which consists of a
list of things you can set. The list is bigger than the screen, so scroll up and down until
you find Applications, and touch that entry. You’re taken to a sublist related to appli-
cations, and one of the entries is Development. Touch that, and you’re shown two
options:

USB Debugging
You want to enable this option by touching it. A green checkmark should appear
in the adjacent checkbox.

Stay awake
This option will keep the screen on as long as the USB cable is connected. It can
be annoying when the screen goes off, taking you back to the opening screen, so
you might as well enable this too.

Your T-Mobile G1 now expects to receive debug information through the USB port,
but don’t plug it in just yet, because we may need to load a special driver on the host.

Load the USB driver for ADB

Depending on which host operating system you are using, you will need to install a
driver for the USB port, or configure the existing driver:

Windows (either Vista or XP)
You will need to install a USB driver that is included with the Android SDK. The
driver is located in <SDK>/usb_driver, where <SDK> is the location in which you
installed the Android SDK.

Once you’ve extracted the driver, plug in the USB cable connecting the phone to
the host. A Found New Hardware dialog will pop up that gives you a chance to
load the new driver. The details will vary slightly, but in general:

First Steps: Building and Running the MicroJobs Application | 39

1. Windows will ask if you want to search for a driver, which you don’t. Instead,
you want to tell it where you put the driver directory, so select the option that
is something like “Install from a list or specified location.”

2. Ignore any dire warnings from Windows about the driver not being certified.
This just means that no one paid Microsoft to perform the certification tests.

3. When asked for the driver’s location, browse to the USB driver directory,
<SDK>usb_driver. The extraction should have created a subdirectory called
android_usb_windows. Select that subdirectory and click OK.

Windows will load the driver and tell you that the hardware is ready to use.

Mac OS X
You’re all set without doing anything.

Ubuntu Linux
For Ubuntu, you need to configure the USB connection with a rules file, located
at /etc/udev/rules.d/50-android.rules. The contents of the rules file are slightly dif-
ferent depending on which version of Ubuntu you are using. If you are using a
different Linux distribution, you’ll need to look at its documentation to understand
how USB rules files are configured.

Ubuntu Dapper Drake
Create a file at /etc/udev/rules.d/50-android.rules with one line in it:

SUBSYSTEM=="usb_device", SYSFS{idVendor}=="0bb4", MODE="0666"

Ubuntu Gutsy Gibbon or Hardy Heron
Create a file at /etc/udev/rules.d/50-android.rules with one line it it:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"

In all cases (Dapper, Gutsy, or Hardy), make the rules file readable and executable
by executing from the shell as root:

chmod a+rx /etc/udev/rules.d/50-android.rules

Connecting the phone

Now that you have the driver loaded, you are ready to plug in the USB cable that
connects the T-Mobile G1 to the host. The phone will beep, and Eclipse will update
itself as it learns of the new target. If you go to a terminal (Linux or OS X) or Command
window (Windows) and type adb devices, you should see something like this:

>adb devices
List of devices attached
emulator-5554 device
HT840GZ12968 device

40 | Chapter 3: Using the Android Development Environment for Real Applications

Running MicroJobs on the phone

Now when you select Run from the Eclipse menu, you will still get the dialog that asks
what kind of application you want to run (Android Application, Java Applet, Java
Application, etc.), but now you will get a second dialog that asks which target you want
to run on. The available targets will be listed, and you can click on either the emulator
or the phone, depending on which you’d prefer. Select the phone, and the application
is downloaded (using the debug signature; more about application signatures in Chap-
ter 7), and started on the phone. Most of the debug features available on the emulator
(covered in detail in Chapter 5) are also available when running in debug mode on the
phone.

Summary
We’ve looked at this more realistic application in some detail to understand the pro-
cedures you’ll need to follow when developing your own application. Your application
is likely to differ in the details, but it will inherit a similar structure, and you will use
similar procedures to build and run your application, both on the emulator and on a
live phone. You now know all the basics you need to start building your application,
but as you’ll see, there is a lot more to learn about Android and the features you can
build into your application.

Summary | 41

CHAPTER 4

Under the Covers: Startup Code and
Resources in the MJAndroid

Application

Chapter 3 introduced the major application we use in this book to illustrate basic An-
droid concepts. That chapter explained which files make up the source code, but it
didn’t actually cover any source code in the application. We’ll start looking at source
code in this chapter. And to allow you to get started developing an application quickly,
we’ll begin with the first task every standalone application has to perform: initialization.

The events covered in this chapter occur between your selecting “Run As Android
Application” from the Eclipse menu and seeing the map that MJAndroid displays at
startup. This chapter shows how Android makes it easy to create relatively complex
applications. In just 80 lines of code and some associated XML resource files,
MJAndroid manages to:

• Display an interactive map

• Track the current location of the Android phone and update the map

• Create a local database of information and load user preferences into it

• Provide a dynamically changing menu

• Display user interface elements such as labels, buttons, and spinners

• Run a new Activity to display a supporting screen

The Java code in an Android application interacts tightly with XML resource files, so
we’ll bounce back and forth between them in this chapter. As we point out repeatedly,
XML files are easier to tweak during development and maintain over the life of an
application. The design of Android encourages you to specify the look and behavior of
the application in the resource files.

43

Initialization Parameters in AndroidManifest.xml
As Chapter 3 explained, we told Android to launch Microjobs.java as the first Activity
for MJAndroid. We defined that on the Application tab of the AndroidManifest.xml
editor. The first part of the XML code that results from that choice is shown here:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.microjobsinc.mjandroid" android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name=
 "android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-permission android:name="android.permission.ACCESS_MOCK_LOCATION" />
 <uses-permission android:name="android.permission.INTERNET" />

 <application android:icon="@drawable/icon2">
 <uses-library android:name="com.google.android.maps" />
 <activity android:name=".MicroJobs" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

This section of the chapter focuses on the XML in this file. The MicroJobs Activity is
identified in the manifest at the beginning of the file. This part of the file is normally
created in Eclipse when you first create the Project that you use to write your
application.

Like all good XML files, line 1 has the standard declaration of the XML version and the
character encoding used. Before we get into the Activities that make up the MJAndroid
application, we define a few parameters and declare needed permissions for the whole
application:

package="com.microjobsinc.mjandroid"
This is just the package name we gave when we created the application in Eclipse.
It’s also the default package for all the modules in the application.

android:versionCode
This is an integer that should always increment with each new version of the ap-
plication. Every application should include a version code, and it should always
be a monotonically increasing integer from version to version. This lets other pro-
grams (such as Android Market, installers, and launchers) easily figure out which
is the latest version of an application. The filename of your .apk file should include
this same version number, so it is obvious which version it contains.

android:versionName
This version identifier is a string, and it is intended to be more like the version
numbers you usually see for applications. The naming convention is up to you, but

44 | Chapter 4: Under the Covers: Startup Code and Resources in the MJAndroid Application

generally the idea is to use a scheme like m.n.o (for as many numbers as you want
to use), to identify successive levels of change to the application. The idea is that
this is the version identifier that would be displayed to a user (either by your ap-
plication or another application).

<uses-permission android:name=...
There are four of these in MJAndroid, and they declare that the application intends
to use features of Android that require explicit permission from the user of the
mobile device running the application. The permission is requested when the ap-
plication is installed, and from then on Android remembers that the user said it
was OK (or not) to run this application and access the secure features. There are
many permissions already defined in Android, all described in the Android docu-
mentation (search for android.Manifest.permission). You can also define your
own permissions and use them to restrict other applications’ access to functions
in your application, unless the user grants the other application that permission.
The permissions requested here are:

• ACCESS_FINE_LOCATION, which is required to obtain location information from a
GPS sensor.

• ACCESS_LOCATION_EXTRA_COMMANDS. The Android documentation doesn’t tell us
which location commands are “extra,” so we’ll ask for all of them.

• CALL_PHONE. This allows MJAndroid to request that the Dialer place a mobile
phone call on its behalf.

• ACCESS_MOCK_LOCATION, so we can get fake location information when we’re run-
ning under the emulator.

• INTERNET, so we can retrieve map tiles over an Internet connection.

android:icon="@drawable/icon2"
This is the filename for a PNG file that contains the icon you’d like to use for your
application. In this case we’re telling the Android SDK to look for the icon file in
the drawable subdirectory of the res (resources) directory under MJAndroid.
Android will use this icon for your application in the Android Desktop.

Turning our attention to the definition for the first (and main) Activity, MicroJobs, we
first define a few attributes for the Activity:

android:name
The name of the Activity. The full name of the Activity includes the package name
(which in our application is “com.microjobsinc.mjandroid.MicroJobs”), but since
this file is always used in the package’s namespace, we don’t need to include the
leading package names. The Android SDK strips the package name down to
“.MicroJobs” when it creates this part of AndroidManifest.xml, and even the lead-
ing period is optional.

Initialization Parameters in AndroidManifest.xml | 45

android:label
The label that we want to appear at the top of the Android screen when the Activity
is on the screen. We saw this before in HelloWorld, where we changed the string
in strings.xml to match our application.

We then declare an intent filter that tells Android when this Activity should be run.
We talked briefly about Intents in Chapter 1, and now we see them in use. As you’ll
recall, when Android encounters an Intent to fulfill, it looks among the available Ac-
tivities and Services to find something that can service the Intent. We set two attributes:

action
Right now Android is trying to launch this application, so it’s looking for an Activity
that declares itself ready to resolve the MAIN action. Any application that is going
to be launched by the Launcher needs to have exactly one Activity or Service that
makes this assertion.

category
The Intent resolver in Android uses this attribute to further qualify the Intent that
it’s looking for. In this case, the qualification is that we’d like for this Activity to
be displayed in the User Menu so the user can select it to start this application.
Specifying the LAUNCHER category accomplishes this. You can have a perfectly
valid application without this attribute—you just won’t be able to launch it from
the Android user interface. Normally, again, you’ll have exactly one LAUNCHER
per application, and it will appear in the same intent filter as the opening Activity
of your application.

Initialization in MicroJobs.java
Having seen the XML resources that Android uses to launch the application, we can
turn to some Java code that initializes the application. Use Eclipse to open
MicroJobs.java in the Java editor.

After the package declaration and the import statements, the MicroJobs class is defined.
Most Activities (and the other activities in this application) extend the Activity class.
Because we want to display a map in this application, and we want to take advantage
of the powerful mapping features built into Android, we declare that MicroJobs will
extend MapActivity, as shown in the following code segment. If you look in the Android
documentation for MapActivity, you will see that it is a subclass of Activity, and so
inherits all the Activity methods and variables:

/**
 * MicroJobs
 */
public class MicroJobs extends MapActivity {

Skip over the first few variables and the definition of the MJOverlay class for the moment,
to get to the definition of the onCreate method, as shown in the code block that follows.

46 | Chapter 4: Under the Covers: Startup Code and Resources in the MJAndroid Application

This is the method called by Android when it first launches an application, so that’s
where we’ll put our initialization code. Let’s take a look at it, section by section:

MapView mvMap;
MicroJobsDatabase db;
MyLocationOverlay mMyLocationOverlay;
double latitude, longitude;

/**
 * Called when the activity is first created.
 *
 * @see com.google.android.maps.MapActivity#onCreate(android.os.Bundle)
 */
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

The first thing to note is that onCreate receives an argument when it runs: a Bundle
that will be referred to as savedInstanceStte. Note also that the first thing onCreate
does is call the onCreate method of its superclass. That makes sense because we want
the chain of superclasses to initialize themselves appropriately. But what is this Bundle
thing?

A Bundle is one of the mechanisms used by Android to pass structured data between
Activities. It’s just a parcel of key/object pairs, and you’ll see later when we start another
Activity that we have the option of passing that Activity a Bundle. In the case
of MicroJobs, we aren’t going to make use of any of the resources in the
savedInstanceState Bundle, but we faithfully pass it on to the onCreate method of our
superclass.

The very last line in this section of code sets our Content View. A view, as we explained
in Chapter 1, describes how an application window appears and interacts with the user.
So the setContentView call tells Android that we want to use the layout information in
R.layout.main.java to lay out the screen for the Activity. As Chapter 2 explained, the
R.* resource files are generated by the Android SDK from your own XML resource files
when you compile your application (as a result of selecting Run); in this case, the pa-
rameters come from our res/layout/main.xml file. Android “inflates” these parameters
when layouts are created, using them to determine how the layout looks.

So let’s digress for a minute and take a look at the first part of the XML version of that
file:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#ffc5d1d4"
 >
 <com.google.android.maps.MapView

Initialization in MicroJobs.java | 47

 android:id="@+id/mapmain"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:clickable="true"
 android:apiKey="0P18K0TAE0dO2GifdtbuScgEGLWe3p4CYUQngMg"
 />
 <TextView
 android:id="@+id/lblMicroJobsToday"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="MicroJobs for You Today Near:"
 android:textSize="20dp"
 android:textColor="#FF000000"
 android:layout_centerHorizontal="true"
 android:gravity="top"
 />
 <Spinner
 android:id="@+id/spnLocations"
 android:layout_width="250dp"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="2dp"
 android:layout_below="@+id/lblMicroJobsToday"
 />
 <Button
 android:id="@+id/btnShowList"
 android:layout_width="150dp"
 android:layout_height="wrap_content"
 android:text="List Jobs"
 android:textSize="20sp"
 android:gravity="center_vertical"
 android:layout_centerInParent="true"
 android:layout_alignParentBottom="true"
 />
</RelativeLayout>

First, we say that we are going to use a Relative Layout for this screen. Android offers
a variety of Layout types, and though it’s beyond the scope of this book, you can even
define your own Layout types. A Relative Layout says that we are going to define the
positions of the different user interface elements by relating their positions to each other
and to the overall screen. That may sound a little vague right now, but it will be clear
when we go into some of the attributes in detail. We go into much more depth on the
process of screen layout later in this book in Chapter 12.

The first few lines of code define overall attributes for the screen layout:

android:orientation
This tells Android which way we want “gravity” to work in determining the screen
layout.

android:layout_width and android:layout_height
These tell Android that we want to make use of the whole screen; we aren’t trying
to leave room for other Activities to be partially visible.

48 | Chapter 4: Under the Covers: Startup Code and Resources in the MJAndroid Application

android:background
This defines the color of the background for the application (which isn’t really
visible in our case, since the map covers the whole screen).

Colors in Android
This is a good time to talk briefly about defining colors in Android; we’ll discuss it
further when we talk about graphics in Chapter 12. The color specification will be
familiar to you if you’ve worked with web pages (although on a web page, the Alpha
value is the last item instead of the first). Colors in Android are defined by a pound sign
(#) followed by four 8-bit integers in hexadecimal:

Alpha
The transparency of the resulting color, FF being completely opaque and 0 being
completely transparent.

Red
Red’s contribution to the resulting color, FF being fully on and 0 meaning no red.

Green
Green’s contribution to the resulting color, FF being fully on and 0 meaning no
green.

Blue
Blue’s contribution to the resulting color, FF being fully on and 0 meaning no blue.

Common colors are also defined as global constants for use in Java.

The rest of the file defines each of the visual elements of the screen, and tells Android
where we’d like it placed.

The following elements of the application are defined in the file:

Section starting <com.google.android.maps.MapView
This is the main View for this Activity:a Map that consumes most of the screen and
shows the locations of jobs that might be of interest to the user. You’ll see that
most Views can be described in a layout file by just writing the name of the View,
but this holds only for Views that are part of Android’s default libraries. MapViews
are not included, so we create an XML element for it. The MapView View is defined
in the maps library, so the full pathname is com.google.android.maps.MapView. We
assign it the following attributes:

android:id
This defines an identifier that we can use to refer to this View, either from other
places in this XML file or from our Java code. You’ll see later in the Java ini-
tialization code that we connect the Java source code with this XML source
through these IDs.

android:layout_width and android:layout_height
These are the same attributes defined earlier for the application, but here they
apply to the MapView alone, not the whole application. The fill_parent

Initialization in MicroJobs.java | 49

value, as its name suggests, asks for permission to fill all the space within the
parent. In this case the parent happens to be the whole screen, but it is
important to keep in mind that this attribute affects only the relationship be-
tween the MapView and its parent.

android:clickable
This tells Android that we want an interactive MapView that the user can click
on using the touchscreen on the Android phone (simulated by mouse clicks
on the emulated Android phone).

android:apiKey
This is an attribute unique to MapViews. You need an API Key from Google
to use a Map View, just as you do when you add a Google map to your web
page. You’ll see how to obtain and use Map API Keys in Chapters 7 and 9.

Section starting <TextView
This will display a Label telling the user what he’s looking at. The attributes defined
here are typical of what needs to be defined for a TextView. In addition to attributes
we already saw under MapView, this element has:

android:text
This contains the text we’d like to display in the TextView.

android:textSize
This says how big Android should display the text—in this case, 20 scaled
pixels high (see the upcoming sidebar for a description of Android
dimensions).

android:textColor
This defines the color of the text.

android:layout_centerHorizontal
This tells Android that we want it to center the displayed text horizontally.

android:gravity
This tells the Android layout manager where to position the element vertically
relative to its container, when the element is smaller. Gravity can be defined
as top, center_vertical, or bottom. Note that gravity and attributes like
layout_centerHorizontal are layout hints that the layout manager uses to lay
out the children of a container. There is no guarantee that the hints will be
followed, but the layout manager attempts to satisfy the combined requests
from the container, the children it contains, and any global layout hints from
the user interface.

There are many other attributes we could define for our TextView, and they are all
described in the Android documentation that accompanies the SDK.

Section starting <Spinner
This is a standard Android control that allows the user to select from the current
location or any of several “favorite” locations that are recorded in the user’s profile.
In addition to the attributes we’ve seen already, the android:layout_below attribute

50 | Chapter 4: Under the Covers: Startup Code and Resources in the MJAndroid Application

controls the placement of the Spinner. This is the first attribute we’ve seen that
applies specifically to the Relative Layout we chose at the top of the file. It tells
Android that it should position this Spinner just below the interface element whose
id is lblMicroJobsToday.

Section starting <Button
The final segment of main.xml defines a Button widget, which is just what it sounds
like—a button that the user can press to initiate some action. In this case, we want
a button that takes us to the listing of jobs.

android:layout_width and android:layout_height
These are the same attributes used for the other views, but we don’t want the
Button to take up the whole width of the screen, so we give it a defined width.
Vertically, we just tell it to wrap the text that it is displaying.

android:text
This places a label on the Button.

android:textSize
This tells Android how large we’d like that text drawn—in this case, 20 scaled
pixels.

android:layout_centerInParent
Since the button is not as wide as the parent (the screen), we need to tell the
layout manager where to put the Button horizontally. This says “put it in the
middle.”

android:layout_alignParentBottom
The Button is only tall enough to wrap the label that it displays, so we also
need to tell the layout manager where to place it vertically on the screen. This
says “put it at the bottom.” Note that we could also have said
android:gravity=bottom. Android provides multiple ways of expressing our
layout requests.

Dimensions in Android
Often you will need to specify a dimension for some element of the user interface. In
the example here we generally used scaled pixels (abbreviated “sp”), but Android ac-
tually offers a rich set of dimensions to choose from:

px (pixels)
If a dimension is set at 10px, it will be exactly 10 pixels long, no matter what the
physical size (and physical density) of the pixels on the display. 10px will therefore
be different sizes on handset displays with different pixel densities. On a QVGA
display, for example (320×240 pixels), it will be 1/24th of the height of the display.
The same 10px running on a VGA display (640×480 pixels) will be 1/64th of the
height of the display.

dip or dp (device-independent pixels)
In an effort to make it easier to adapt applications to different pixel densities,
dimensions can be expressed in device-independent pixels (sometimes also called

Initialization in MicroJobs.java | 51

“density-independent pixels”). When you specify a dimension of 10dpi, Android
will scale the resulting object so it appears the same size it would appear on a
160dpi screen. For example, if a 640×480 display is 4"×3", its pixel density is 160
dots per inch (640/4, or 480/3). On that screen, dp’s are the same as px’s. But if
we run the same application on a tablet-size VGA screen—say, 8"×6"—the pixel
density is 80dpi, and a dimension given as 10dp will be twice as large as a dimension
given as 10px. The scaling factor for dp’s is approximate—Android doesn’t try to
make dp’s come out exactly right.

sp (scaled pixels)
Scaled pixels are a lot like dp’s, but they are intended for elements that need finer
control over the density scaling factor, such as text.

pts (points)
This is used to express text size in points, just as you would in any text editor.
Points are a fixed dimension (roughly 1/72nd of an inch), so the text will appear
the same size on any display.

in (inches)
This is just what it says: the dimension in inches.

mm (millimeters)
This is also just what it says, only metric this time.

More Initialization of MicroJobs.java
The previous section was a rather long digression into XML Layout files, but as you
can see, that is where a lot of the initialization of the application’s user interface takes
place: where views are defined, named, and given attributes; where the screen is layed
out; and where hints are given to the layout manager describing the way we would like
the screen to look. Let’s get back to the Java code that brings up the application, starting
where we left off in MicroJobs.java:

db = new MicroJobsDatabase(this);

// Get current position
final Location myLocation
 = getCurrentLocation((LocationManager) getSystemService(Context.LOCATION_SERVICE));

Spinner spnLocations = (Spinner) findViewById(R.id.spnLocations);
mvMap = (MapView) findViewById(R.id.mapmain);

// get the map controller
final MapController mc = mvMap.getController();

mMyLocationOverlay = new MyLocationOverlay(this, mvMap);
mMyLocationOverlay.runOnFirstFix(
 new Runnable() {
 public void run() {
 mc.animateTo(mMyLocationOverlay.getMyLocation());
 mc.setZoom(16);

52 | Chapter 4: Under the Covers: Startup Code and Resources in the MJAndroid Application

 }
 });

Create the database object
We said before that we are going to use a small SQLite database to hold the job,
worker, and employer information. The first line initializes that database by asking
Android to create a new MicroJobsDatabase object (and initialize it). The Java code
for this is in the file MicroJobsDatabase.java, and we’ll look at it in detail later in
Chapter 8.

Get our location
We’ll need to know our current location to do things like finding jobs that are close
by, so we get it here by calling getCurrentLocation, which is a method defined later
and that accepts the name of our LocationManager as its argument. The Location
Manager is a special class that Android instantiates for you, and you can retrieve the
instance for your application through the call to getSystemService.

Initialize the Spinner
As explained in the previous section, we place a Spinner widget at the top of the
screen to help users quickly go to one of their favorite locations and look for jobs.
This is the first time we encounter the findViewById method, which is the way we
access the IDs we defined in the XML layout file. If you recall, we identified the
Spinner in main.xml as spnLocations. When we built the application, Android
compiled that XML into a Java identifier that it placed in R.layout.main.java and
linked it into the application. So now we can use findViewById to connect our Java
Spinner to the XML attributes we defined.

Initialize the MapView and MapController
Similarly,we connect the Java MapView to the attributes defined for it in
main.xml, and then attach a MapController to it. You’ll see much more about the
controller in Chapter 9, but for now think of it as a handle to get to all the methods
you need to control the MapView.

Initialize the LocationOverlay
We want to create a LocationOverlay that will build and draw the Map in our
MapView when we want to view a map of our local area. Again, Maps are covered
in much more detail later, but you can see here that we use the constructor to create
a new overlay and tell it to run when it gets its first fix from the LocationManager,
so that it displays our current location. We also set the zoom level so it’s about
right for a metropolitan area.

We’ll skip over the map overlay initialization, because that will be covered in more
detail in Chapter 9, where we talk about mapping. We still need to initialize the re-
maining Views on this screen: the Button and the Spinner. The code for these follows:

// Create a button click listener for the List Jobs button.
Button btnList = (Button) findViewById(R.id.btnShowList);
btnList.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {

Initialization in MicroJobs.java | 53

 Intent intent = new Intent(MicroJobs.this.getApplication(),
 MicroJobsList.class);
 startActivity(intent);
 }
});

// Load a HashMap with locations and positions
List<String> lsLocations = new ArrayList<String>();
final HashMap<String, GeoPoint> hmLocations = new HashMap<String, GeoPoint>();
hmLocations.put("Current Location", new GeoPoint((int) latitude, (int) longitude));
lsLocations.add("Current Location");

// Add favorite locations from this user's record in workers table
worker = db.getWorker();
hmLocations.put(worker.getColLoc1Name(), new GeoPoint((int)worker.getColLoc1Lat(),
 (int)worker.getColLoc1Long()));
lsLocations.add(worker.getColLoc1Name());
hmLocations.put(worker.getColLoc2Name(), new GeoPoint((int)worker.getColLoc2Lat(),
 (int)worker.getColLoc2Long()));
lsLocations.add(worker.getColLoc2Name());
hmLocations.put(worker.getColLoc3Name(), new GeoPoint((int)worker.getColLoc3Lat(),
 (int)worker.getColLoc3Long()));
lsLocations.add(worker.getColLoc3Name());

ArrayAdapter<String> aspnLocations
 = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item,
 lsLocations);
aspnLocations.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
spnLocations.setAdapter(aspnLocations);

Create a callback for the btnList Button View
We first get a handle on the Button View by doing a lookup on its ID, just as we
did before for the Spinner and MapView. We then set the behavior of the Button,
which uses a construct known as a listener to respond to external events.

When a user clicks a button, Android sends an event to its OnClickListener lis-
tener. In this code, we set the Button’s behavior by setting its OnClickListener to
the method that we immediately define, onClick.

When the user clicks on btnList, we want to display a list of available MicroJobs.
To do that, we have to launch a new Activity, MicroJobsList.java, which contains
the screen that displays the list. We can do that by calling the startActivity method
with an Intent that describes the new Activity. The first statement in onClick()
creates the Intent, using the constructor for Intents that allows us to explicitly name
the Activity. This constructor takes two arguments: a pointer to the context of the
current application, and the name of the Class to start. The next statement in
onClick() then uses that Intent to start an instantiation of MicroJobsList.

Initialize the list of entries in the Spinner View
We need two data structures to pass to our Spinner: a list of favorite locations
that the Spinner will display (and the user can select), and a hash map connecting

54 | Chapter 4: Under the Covers: Startup Code and Resources in the MJAndroid Application

location names to geographical locations (latitude and longitude). Don’t confuse
the HashMap with a geographical Map; the HashMap uses the term “map” in the
way many programmers use it, to mean an associative array.

We first create the list of location names (lsLocations), and then the HashMap
that we’ll use to map names to GeoPoints (hmLocations). We then put the first
entry, Current Location, into the list and the HashMap. This entry will always
return the user to the current location. This item is special because it can be a
moving target. For example, the user may be consulting our application on a fast-
moving train or an airplane, so we have to dynamically retrieve the location of the
device whenever the current location is selected.

We then add three entries for the user’s “favorite locations,” recorded in the user’s
record in the workers table in the MJAndroid database. We’ll dive into the details
of how the database works and how it’s set up later. For now, we’ll just say that
the code immediately following worker = db.getWorker(); loads the location
names and positions (latitudes and longitudes) into the lsLocations and
hmLocations lists.

Spinner Views require an ArrayAdapter to feed them the list, so we create
one named aspnLocations, attaching it to the list of location names in its construc-
tor. Then, we attach the adapter to the Spinner by calling setAdapter. The state-
ment "aspnLocations.setDropDownViewResource(android.R.layout.simple_spin
ner_dropdown_item);" provides the Spinner with the drop-down layout necessary
for the user to display the whole list of locations.

Now that we have initialized the lists, we can add the following code, which enables
the appropriate action when the user clicks on an item with the Spinner:

 // Set up a callback for the spinner
 spnLocations.setOnItemSelectedListener(
 new OnItemSelectedListener() {
 public void onNothingSelected(AdapterView<?> arg0) { }

 public void onItemSelected(AdapterView<?> parent, View v, int position,
 long id) {
 TextView vt = (TextView) v;
 if ("Current Location".equals(vt.getText())) {
 latitude = myLocation.getLatitude();
 longitude = myLocation.getLongitude();
 mc.animateTo(new GeoPoint((int) latitude, (int) longitude));
 } else {
 mc.animateTo(hmLocations.get(vt.getText()));
 }
 mvMap.invalidate();
 }
 });
}

Initialization in MicroJobs.java | 55

Initialize the Spinner callback
Just as we did with the Button View, we create a method named onItemSelected
and set it to be called when the user selects an item using the Spinner. The
onNothingSelected method is also required, but we leave it empty (not used).

As mentioned earlier, Current Location is a special case because we retrieve the
device’s location dynamically when the user selects that item. The if block handles
that case: we look to see whether the selection is Current Location and if it is, we
get the current location and go there. Otherwise, we go to the selected location.

Then, in the final statement, we invalidate the map so it will redraw itself.

Summary
With these explanations (skipping over a few advanced features covered later in the
book), we’ve finished initializing the application—at least as far as the main Activity,
MicroJobs, is concerned. We’ve seen how the Activity gets started, how it gets its layout
information from its associated layout XML file (main.xml), how it initializes the Views
it contains, and how it causes the initialization of other Activities or Services (either by
invoking a constructor, as when creating the SQL database instance, or by asking An-
droid to start another Activity, as with MicroJobsList).

56 | Chapter 4: Under the Covers: Startup Code and Resources in the MJAndroid Application

CHAPTER 5

Debugging Android Applications

Unless you’re really good or really lucky, the applications you write for Android will
not be perfect the first time you run them. Fortunately, Eclipse and the Android Soft-
ware Development Kit provide a rich set of tools for debugging, and even some features
that make it easier to write correct code. We’ll take a look at the set of available tools
in this chapter, and provide some pointers to other places you can look for even more
information on some of the tools.

The Tools
Throughout the development lifecycle of writing, building, and running the applica-
tion, the primary tools Android developers use are:

Eclipse Java Editor
A specific text editor for Java that Android SDK has informed about the Android
programming environment. The editor not only warns you about code the compiler
can’t parse, but also gives you a wealth of information about what it can.

Java and Dalvik Build System
Recall that Android converts your Java application to run on the Dalvik virtual
machine under Android. The Java compiler and the Dalvik translator both provide
error information if they can’t build your application.

Eclipse Debugger
Eclipse provides a source-level debugger that the Android SDK connects with the
running Dalvik bytecode, so you have all the debug capability you’d normally ex-
pect from a Java program running under Eclipse.

Logcat
Android also provides a general-purpose logging package that you can take ad-
vantage of to log informational or error messages from your running application.
Perhaps of more importance, Android uses this facility extensively to tell you what
is going on as it starts up, initiates your application, and tries to run it. There is
also a special logcat log for telephony-related messages.

57

Android Debug Bridge (adb)
This provides a command-line debugging interface to a running Android phone or
emulator.

DDMS
Android also provides a special window-oriented debugging environment custom
tailored for Android and the Dalvik VM.

Traceview
An Android-specific utility that tracks all the method calls your application exe-
cuted and the time spent in each method.

Eclipse Java Editor
The Android SDK takes full advantage of the features built into the Eclipse IDE,
including those in the Eclipse text editor, which is customized for Java source code
development. Let’s use a simple application as an example of some of that editor’s
features. If you’re already an expert on using Eclipse for Java development, you can
skip this section. If you’re new to Eclipse (or new to Java), there are some hints here
that will speed up your development of Android applications.

Java Errors
We’ve created a new Android project called DebugTest, using Eclipse and the Android
SDK (File → New → Project → Android Project). When you do that, and open the Java
source file the SDK created for you, you get a central pane that looks like Figure 5-1.
This is the Eclipse Java text editor, and it is already doing its job to point out errors in
the nascent application.

In this case, the error indication is in the left margin: the little lightbulb and red X on
line 11. Within that line, the editor has underlined the R in R.layout.main to tell you
specifically where there’s a problem. Editors in Eclipse are smart enough to understand

Figure 5-1. Eclipse debug window upon startup

58 | Chapter 5: Debugging Android Applications

the syntax of the language they are editing, and in this case, the error flag is telling us
there’s a problem with this part of the code. If we use the mouse to hover over the R,
we get a pop up that gives us more information, as shown in Figure 5-2. If you hover
your mouse over the symbols in the left margin, you get the same pop up.

Notice also that there’s a little red indicator in the upper-right area of the pane, indi-
cating there is an error somewhere in this file, and a little red open rectangle in the right
margin. If this file were big enough to need the vertical scroll bar, you could easily see
the locations of the errors in the file, and you could scroll to them by dragging the scroll
segment to the red rectangle. Eclipse makes it very easy to see where it has found errors
in your code.

A quick check of the Package Explorer pane shows that there’s no R.java file. Of course
not! It doesn’t exist, because we haven’t built the project yet, and that’s why resources
under R can’t be resolved. After we build DebugTest (Project → Build All), the error
goes away (both the red underline and the symbols in the margin).

So let’s add some code for a simple application and see some of Eclipse’s debug features.
We’ll edit DebugTest.java and main.xml to add a label, a text box, a WebView (we want
some Internet action to give us more to look at), and a button. The application will be
a trivial browser, with the box being the URL and the button being the trigger to go
load the URL into the WebView. We’ll throw in some intentional errors to see how
Eclipse handles them.

Our altered main.xml file now looks like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

Figure 5-2. Eclipse error detail

Eclipse Java Editor | 59

 android:text="Enter URL:"
 />
<EditText
 android:id="@+id/URL"
 android:layout_width="fill_parent"
 android:layout_height="60.0dip"
 android:maxLines="1"

<Button
 android:id="@+id/btnGo"
 android:layout_width="wrap_content"
 android:layout_height="60.0dip"
 android:text="Go"
 />
<WebView
 android:id="@+id/wvBrowser"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
<LinearLayout>

and DebugTest.java looks like this:

package com.oreilly.debug;

import android.app.Activity;
import android.os.Bundle;

public class DebugTest extends Activity {
 private EditText txtURL;
 private Button btnGo;
 private WebView wvBrowser;

 // Set up an onClick routine to gather URLs entered by the user
 private final Button.OnClickListener btnGoOnClick = new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 wvBrowser.loadURL();
 }
 catch (Exception e) {}
 }
 };

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Find the Views in the layout file
 txtURL = (EditText) findViewById(R.id.txtURL);
 btnGo = (Button) findViewById(R.id.btnGo);
 btnGo.setOnClickListener(btnGoOnClick);
 wvBrowser = (WebView) findViewById(R.id.wvBrowser);
 }
}

60 | Chapter 5: Debugging Android Applications

If you type in these lines (instead of copying and pasting), you’ll see that the editor tries
to anticipate what you might type given the context of where you are in the code. As
you type “wvBrowser.”, for example (including the final dot), the editor knows that
wvBrowser is a WebView, so it gives you a list of methods and variables that WebViews
have. This is a great feature that really helps cut down on mistyped method and variable
names. Once you’ve typed or selected the method, the editor shows you the parameters
for that method, so you don’t have to look those up either.

Since we need to access the Internet to get web pages, we ask for that permission in
AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.oreilly.debug"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".DebugTest"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
<uses-permission android:name="android.permission.INTERNET"></uses-permission>
</manifest>

Looking at main.xml in the Eclipse editor pane (now an XML editor, but with many of
the same features we saw in the Java editor), we see some errors (Figure 5-3).

Figure 5-3. main.xml in Eclipse

Eclipse Java Editor | 61

A quick inspection confirms what the editor is telling us—that there’s no close tag for
the EditText. We type /> into line 17, and the red underlines immediately go away.
Now that the EditText tag is fixed, we’re left with one more error, shown in Figure 5-4.

It says we’re missing the end tag for LinearLayout, but we’re really missing the slash
that should start the end tag </LinearLayout>. From the editor’s syntactical point of
view, it knows only that it expected to find a </LinearLayout> before the next <Linear
Layout> tag or the end of the file, and it didn’t find one. The error message is enough
to cause us to look in the right place and figure out what is really wrong.

Now that we have main.xml fixed up, let’s look at the first part of DebugTest.java as it
appears in Eclipse (Figure 5-5). We can see from the right scroll margin that there are
a total of seven errors, and our mouse is hovering over the error in the declaration of
btnGo.

Now for one of my favorite features of Eclipse. The source of the error displayed in
Figure 5-5, it turns out, is that EditText can’t be resolved in the example, because we
haven’t imported the package that defines EditTexts. You could go look in the Android
documentation and find the right name for the library, but Eclipse has a labor-saving

Figure 5-4. Additional main.xml error

Figure 5-5. DebugTest.java with errors, screen 1

62 | Chapter 5: Debugging Android Applications

feature that will find it for you. Just type Ctrl-Shift-O (that’s the letter O) while the
editor has focus, and Eclipse will attempt to resolve all the unresolved references in the
file by finding appropriate libraries. With that one stroke, the appropriate packages get
imported for EditText, Button, and WebView (you can’t see them in Figure 5-5, because
they’re hidden by the pop up), and those errors disappear from the editing pane as well.

That leaves us with five more errors, so we scroll down as shown in the Eclipse screen-
shot in Figure 5-6.

The four errors in lines 29, 32, 33, and 35 have the same source as the one in Fig-
ure 5-2 and will go away the first time we build the project with the new main.xml.
Let’s fix the remaining error using Eclipse’s help.

We currently have the mouse hovering over the error in line 19, and the pop up says
we’re trying to pass an Editable instead of a String to the loadURL(String) method.
That’s easy to fix: Editables have a toString method, like most objects, so we can change
onClick to look like this:

public void onClick(View v) {
 try {
 wvBrowser.loadUrl(txtURL.getText().toString());
 }
 catch (Exception e) {}
}

Now we try to build and run the project (Run → Run → Android Application), but
Eclipse tells us we still have errors. It helpfully lists all the problems found in the Prob-
lems tab, located in the pane at the bottom of the Eclipse window. Figure 5-7 shows
that tab.

Clicking on an error in the Problems tab takes us directly to the corresponding line of
source code in the Editing pane for DebugTest.java. A quick look at main.xml reveals

Figure 5-6. DebugTest.java with errors, screen 2

Eclipse Java Editor | 63

the problem: we referred to the text box as URL in main.xml, and tried to find it as
txtURL in the Java code. A quick fix to main.xml, and the compile completes.

Eclipse starts the Android emulator for us and loads our application so it appears on
the screen. The application runs—now to see whether it produces correct results.

If you type in a URL like www.oreilly.com and click the Go button, you get...an error.
Instead of the web page you asked for, you see a page that says “Web Page not Avail-
able.” Let’s try http://www.oreilly.com...ah, that works. So let’s add code that checks
whether the URL starts with http://, and if not, adds it:

public void onClick(View v) {
 try {
 String sURL = txtURL.getText().toString();
 if(sURL.substring(0,6).equals("http://")) {
 wvBrowser.loadUrl(sURL);
 }else{
 sURL = "http://" + sURL;
 wvBrowser.loadUrl(sURL);
 }
 }
 catch (Exception e) {}
}

Now when we run the program using www.oreilly.com as the URL, it works—but
http://www.oreilly.com doesn’t! Let’s use the debugger to figure out why.

The Debugger
The Android SDK makes the use of the Eclipse debugger completely transparent, so
let’s use it to see what’s going wrong with our program. We’ll put a breakpoint at the
line we just entered, so the debugger will break there when we run the program. Eclipse
gives us three ways to toggle a breakpoint:

• Use the menus. Select the line you want to toggle and choose Run → Toggle
Breakpoint.

• Use the keyboard. Select the line you want to toggle and key Ctrl-Shift-B.

• Double-click in the left margin of the editor window at the line you want to toggle
(my favorite method).

Figure 5-7. DebugTest compile problems

64 | Chapter 5: Debugging Android Applications

Whatever way you choose, you end up with a breakpoint mark in the left margin of
the editor window, as shown in Figure 5-8.

To invoke the Debugger, choose Run → Debug → Android Application from the Eclipse
menu. Eclipse and the Android SDK do what they did before (build the program if
necessary, convert to Dalvik, invoke the emulator, load your program, and start it run-
ning). You may get a window in the Emulator that says “Waiting for Debugger: Ap-
plication DebugTest is waiting for the Debugger to connect.” If you do, just wait a few
seconds and the Debugger should finish initializing, the window will disappear, and
you’ll see the DebugTest screen.

Now enter http://www.oreilly.com and click the Go button. DebugTest starts execut-
ing and breaks at the breakpoint. Eclipse automatically changes to the Debug Perspec-
tive, showing you panes that apply to debugging your application. Starting from the
upper left and moving down the window, left to right, these are:

Debug
The Debug pane has a single tab (Debug) that shows a trace of recent execution.
It should show that you are at a breakpoint in a Dalvik thread running DebugTest,
at Java line 19. In its toolbar, this pane also contains the buttons for Resume,
Suspend, Terminate, Step Into, Step Over, Step Return, etc.

Variables and Breakpoints
This pane has two tabs, the most useful of which is Variables, where you can see
the current value of variables that are in scope. So far it’s showing values for this
and v.

Editor
This contains a tab for each of the source files that you had open in the Java Per-
spective. The currently displayed tab should show DebugTest.java, highlighting
the current breakpoint (line 19).

Outline
This shows the structure of your application. DebugTest is simple, so it shows only
one method, OnCreate.

Figure 5-8. Editor pane showing breakpoint

Eclipse Java Editor | 65

Console/Tasks/Properties
This pane has tabs for each of these views, which don’t contain much that’s inter-
esting at the moment. The Console is the most useful, and in some debug situations
can have important information telling you what is (or isn’t) happening.

Logcat
This is the subject of the next section: the contents of the Android logcat log, with
buttons to filter the content.

Focusing on the Editor pane, which shows us stopped at line 19, let’s use the Step Over
button (in the Debug toolbar in the pane above) to step the program one line, to line
20. Now sURL appears in the Variables Pane, and it has the right value, http://
www.oreilly.com. Step once more and you can tell something’s wrong: we expected the
program to take the first branch of the if, and it took the second instead. That’s why
http:// is appearing twice in the URL string. If we step once more we can see that, as
the value of sURL changes in the Variables Pane.

To find out why, let’s use another debug feature of Eclipse. From the menu, choose
Window → Show View → Display. A new Display tab is added to the lower-left pane,
and comes to the front. As long as the Debugger is running, you can type any variable
or expression that’s in scope into this window to display the variable’s value or execute
the expression. We should be curious about the expression we’re comparing the user’s
URL to, sURL.substring(0,6). So cut and paste this method call from the Editor pane
into the Display tab, select the expression, right-click, and choose Display from the
pop-up menu. Eclipse evaluates the expression and displays the result in the pane—
and what do you know, it’s http:/, with the last / missing, as shown in Figure 5-9. This
problem may be typical of errors that programmers encounter with the use of Java’s
substring method, because its second parameter represents the location of the last
character, not the count of characters, as in some other languages. We change the 6 to
7, and the program works fine.

Figure 5-9. Eclipse debugger display pane

66 | Chapter 5: Debugging Android Applications

Logcat
Granted, the errors we debugged in the last section were pretty straightforward—no
different from debugging in any other environment. But most applications are not as
simple as DebugTest, and many problems are much harder to isolate and solve. Android
provides a general-purpose logging facility that can help with many of those more dif-
ficult problems.

As mentioned before, there’s a logcat pane on the Debug perspective (it’s also in the
DDMS perspective, which we’ll talk about in the next section and in “DDMS: Dalvik
Debug Monitor Service” on page 74). The log for DebugTest isn’t very interesting,
so instead start MJAndroid in Debug mode and we’ll take a look at its log.

After the application comes up in the emulator, Eclipse switches to the Debug Per-
spective and shows the logcat pane on the lower right, as it looks in Figure 5-10.

To make the pane large enough to be useful for reading the log, click on the “full screen”
symbol at the upper right of the pane, and it will expand to fill the Eclipse window.
You will then see that there are hundreds of log messages in the file, going back to when
Eclipse first started the instantiation of the emulator that you are using, continuing
through the boot process for Android, loading all the applications, and finally loading
and executing MJAndroid. How are you supposed to find anything useful in all of that?

Luckily, Android provides you with some handy filters to apply to the logfile. See the
V, D, I, W, and E symbols in the toolbar? These filters successively narrow the scope
of messages displayed, as follows:

V (Verbose)
Show everything

D (Debug)
Show Debug, Information, Warning, and Error messages (equivalent to V for now)

I (Information)
Show Information, Warning, and Error messages

Figure 5-10. Logcat pane, minimized

Eclipse Java Editor | 67

W (Warning)
Show Warning and Error messages

E (Error)
Show only Error messages

The columns displayed for the log are:

Time
The time the log entry was made

Priority (the column is not actually labeled)
One of the log entry types from the previous list (D, I, W, or E)

pid
The Linux process ID of the process making the entry

tag
A short tag describing the source of the entry

Message
The log entry itself

About two-thirds of the way through the log (if you started a new emulator when you
brought up MJAndroid), you’ll see a message entry something like:

11-28 12:10:31.475: INFO/ActivityManager(52): Start proc com.microjobsinc.mjandroid
 for activity com.microjobsinc.mjandroid/.MicroJobs:
 pid=163 uid=10017 gids={3003}

which actually appears all on one line; we’ve broken it here so it will fit on a printed
page.

This is a log message from the Activity Manager telling us that it started MicroJobs with
process ID 163 (it will probably be different as you run it). If you click on the green
cross at the top of the logcat pane, it will let you define a custom filter. Fill in a random
name and the pid number that you saw in the log. Now the log is filtered to show only
the messages that apply to this instance of MicroJobs. There are likely still a lot of
messages, which you can filter further (using the D, I, W, and E buttons) or just scan.

If you ask other people for help debugging an error in your own pro-
gram, one of the first things you’ll likely be asked for is a copy of the
logcat output. You can easily extract the content of the logfile to a text
file by selecting what you’d like to preserve and clicking on the little
down arrow at the upper right of the logcat pane, which brings down a
pull-down menu. One of the selections on the menu is “Export Selection
as Text...”, which takes you to a dialog where you can name an output
file for the log text.

68 | Chapter 5: Debugging Android Applications

Looking at logcat to solve runtime errors

Logcat gives you a lot of information about what happened as Android tried to run
your program. It is very useful when you get a generic error message from Android that
doesn’t tell you much. Let’s demonstrate one of my (least) favorites.

In Eclipse, go to main.xml for MJAndroid and remove the apiKey line under the
MapView declaration (save it in a text file or somewhere, so you can restore it; we’re
doing this just to generate an error). The apiKey is needed to access mapping informa-
tion, so removing it brings the program to a screeching halt. When you run the program,
the emulator screen looks like Figure 5-11.

Although it’s good to know that the application stopped, the message tells us very little
about why. If you now look at the logcat output in the Debug perspective (or the DDMS
perspective), you’ll find something like this after MicroJobs starts up, all in red type
(we’ve left off the first few columns so it will fit):

java.lang.RuntimeException: Unable to start activity
 ComponentInfo{com.microjobsinc.mjandroid/com.microjobsinc.mjandroid.MicroJobs}:
 android.view.InflateException: Binary XML file line #8: Error
 inflating class java.lang.reflect.Constructor

Figure 5-11. “Stopped unexpectedly” message

Eclipse Java Editor | 69

 at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2140)
 at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2156)
 at android.app.ActivityThread.access$1800(ActivityThread.java:112)
 at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1580)
 at android.os.Handler.dispatchMessage(Handler.java:88)
 at android.os.Looper.loop(Looper.java:123)
 at android.app.ActivityThread.main(ActivityThread.java:3742)
 at java.lang.reflect.Method.invokeNative(Native Method)
 at java.lang.reflect.Method.invoke(Method.java:515)
 at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:739)
 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:497)
 at dalvik.system.NativeStart.main(Native Method)
Caused by: android.view.InflateException: Binary XML file line #8: Error
 inflating class
 java.lang.reflect.Constructor
 at android.view.LayoutInflater.createView(LayoutInflater.java:512)
 at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java:564)
 at android.view.LayoutInflater.rInflate(LayoutInflater.java:617)
 at android.view.LayoutInflater.inflate(LayoutInflater.java:407)
 at android.view.LayoutInflater.inflate(LayoutInflater.java:320)
 at android.view.LayoutInflater.inflate(LayoutInflater.java:276)
 at
 com.android.internal.policy.impl.PhoneWindow.setContentView(PhoneWindow.java:227)
 at android.app.Activity.setContentView(Activity.java:1569)
 at com.microjobsinc.mjandroid.MicroJobs.onCreate(MicroJobs.java:132)
 at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1122)
 at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2103)
 ... 11 more
Caused by: java.lang.reflect.InvocationTargetException
 at com.google.android.maps.MapView.<init>(MapView.java:227)
 at java.lang.reflect.Constructor.constructNative(Native Method)
 at java.lang.reflect.Constructor.newInstance(Constructor.java:424)
 at android.view.LayoutInflater.createView(LayoutInflater.java:499)
 ... 21 more
Caused by: java.lang.IllegalArgumentException: You need to specify an API Key for
 each MapView.
 See the MapView documentation
 for details.
 at com.google.android.maps.MapView.<init>(MapView.java:263)
 at com.google.android.maps.MapView.<init>(MapView.java:244)
 ... 25 more

The first three errors basically tell us that Android could not start our application be-
cause it could not inflate the Views it found in our layout file. The last error block we
showed in the output clearly tells us we need an API Key for each MapView. Logcat is
often the best way to get insight into errors where there isn’t specific information
otherwise.

Writing your own logcat entries

To write your own entries from your application into logcat, Android provides methods
corresponding to the different entry priorities. The methods are all of the form:

Log.x(String tag, String message, [Throwable exception])

70 | Chapter 5: Debugging Android Applications

where x can be v, d, i, w, or e, and the optional exception makes it easy to report
exceptions that you didn’t anticipate in your code but encounter within a try/catch
block. For example, look at the onItemSelected method for the Spinner in Micro
Jobs.java:

try {
 mc.animateTo(mMyLocationOverlay.getMyLocation());
}
catch (Exception e) {
 Log.i("MicroJobs", "Unable to animate map", e);
}
mvMap.invalidate();

Android Debug Bridge (adb)
Android comes with a specialized command-line debug utility called adb. It lets you
control a device or emulator from your host, offering the kind of remote terminal or
remote shell service that embedded programmers have come to expect when working
with their target systems. Invoke the adb client from a command prompt on the host
(Start → Run → cmd.exe on Windows, or open a terminal window on Linux or OS X).
The client talks to an adb server that runs in background on the host and processes
requests. If the server isn’t running when you start the client, it starts the server for you.
The server in turn communicates with adb daemons that run on either a device or an
emulator. All of this communication is through TCP/IP ports. A single client/server
can deal with multiple devices and emulators, but to simplify things for our discussion,
we’ll assume there’s only one.

If you just type adb at the command prompt, you get the help information for adb:

Android Debug Bridge version 1.0.20

 -d - directs command to the only connected USB device
 returns an error if more than one USB device
 is present.
 -e - directs command to the only running emulator.
 returns an error if more than one emulator
 is running.
 -s <serial number> - directs command to the USB device or emulator with
 the given serial number
 -p <product name or path> - simple product name like 'sooner', or
 a relative/absolute path to a product
 out directory like 'out/target/product/sooner'.
 If -p is not specified, the ANDROID_PRODUCT_OUT
 environment variable is used, which must
 be an absolute path.
 devices - list all connected devices

device commands:
 adb push <local> <remote> - copy file/dir to device
 adb pull <remote> <local> - copy file/dir from device
 adb sync [<directory>] - copy host -> device only if changed
 (see 'adb help all')

Eclipse Java Editor | 71

 adb shell - run remote shell interactively
 adb shell <command> - run remote shell command
 adb emu <command> - run emulator console command
 adb logcat [<filter-spec>] - View device log
 adb forward <local> <remote> - forward socket connections
 forward specs are one of:
 tcp:<port>
 localabstract:<unix domain socket name>
 localreserved:<unix domain socket name>
 localfilesystem:<unix domain socket name>
 dev:<character device name>
 jdwp:<process pid> (remote only)
 adb jdwp - list PIDs of processes hosting a JDWP transport
 adb install [-l] [-r] <file> - push this package file to the device and install it
 ('-l' means forward-lock the app)
 ('-r' means reinstall the app, keeping its data)
 adb uninstall [-k] <package> - remove this app package from the device
 ('-k' means keep the data and cache directories)
 adb bugreport - return all information from the device
 that should be included in a bug report.

 adb help - show this help message
 adb version - show version num

DATAOPTS:
 (no option) - don't touch the data partition
 -w - wipe the data partition
 -d - flash the data partition

scripting:
 adb wait-for-device - block until device is online
 adb start-server - ensure that there is a server running
 adb kill-server - kill the server if it is running
 adb get-state - prints: offline | bootloader | device
 adb get-product - prints: <product-id>
 adb get-serialno - prints: <serial-number>
 adb status-window - continuously print device status for a specified
 device
 adb remount - remounts the /system partition on the device
 read-write

networking:
 adb ppp <tty> [parameters] - Run PPP over USB.
 Note: you should not automatically start a PDP connection.
 <tty> refers to the tty for PPP stream. Eg. dev:/dev/omap_csmi_tty1
 [parameters] - Eg. defaultroute debug dump local notty usepeerdns

adb sync notes: adb sync [<directory>]
 <localdir> can be interpreted in several ways:

 - If <directory> is not specified, both /system and /data partitions will be
 updated.

 - If it is "system" or "data", only the corresponding partition
 is updated.

72 | Chapter 5: Debugging Android Applications

Here are a few of the more useful adb commands. There is much more information
about these and other adb commands in the Android documentation and online.

adb devices
Displays a list of devices and emulators that the adb server knows about. This is a
good way to find the TCP/IP port for an emulator or device if you don’t already
know it. The port number is also displayed in the title of each emulator at the top
of its window. If there’s only one device or emulator running (the normal case,
unless you’re debugging a multidevice application), any adb commands you issue
automatically go to that target. The -s and -e options are provided for multidevice
applications to let you specify a device or emulator.

adb shell
This connects you with a shell running on the target and gives you a # prompt. The
shell is a simplified Unix-like shell, so you can use the usual shell commands (ls,
cat, rm, ps, etc.) to explore the target and make changes as appropriate. Ctrl-D or
exit will get you out of the shell and back to your environment on the host.

sqlite3 [path_to_database]
A particularly useful shell command (you have to get into the shell with
adb shell first) for manipulating SQLite database files. The sqlite3 program is fur-
ther described in Chapter 8, and on the SQLite website (http://www.sqlite.org). You
can optionally include the path to the database file you want to manipulate
(the MJAndroid database, for example, would be in data/data/com.micro
jobsinc.mjandroid/databases/MJAndroid).

adb logcat [filter_spec]
This is another way of looking at the logcat log on the target. When you run it, it
dumps the existing log to your virtual terminal and continues to send additional
log entries as they are generated in the running system. The command is normally
entered with a trailing &, the Unix parameter for “run this in a separate process,”
so that you can go on and use the terminal for other commands (including, even-
tually, to kill the logcat process). The filter specs are of the form tag:priority,
where tag and priority were described in “Logcat” on page 67. So the command
to see all AndroidRuntime log entries of priority E would be:

adb logcat AndroidRuntime:E &

This is also useful for reading the “other” logs, of which there are two: radio and
events. The radio log is accessed through a command like:

adb -b radio &

Similarly, to read the events log, enter:

adb -b events &

adb install [-l] [-r] file_spec
This can be used to install or reinstall an application. The -l option forward-locks
the installation (preventing the application from being copied later to another

Eclipse Java Editor | 73

http://www.sqlite.org

device), and the -r option reinstalls the application without overwriting the
existing application data. The file_spec must be a valid, signed .apk file for the
application to be installed.

adb uninstall [-k] package
This uninstalls the application with the given package name. The package param-
eter needs to be the full name of the package, without the “.apk” extension. So to
uninstall MicroJobs, for example, you’d type:

adb uninstall com.microjobsinc.mjandroid

If you want to keep the application’s associated data, you include the -k option.

adb push local remote
This command copies a file from the local name on the host to the remote name
on the target.

adb pull remote local
This is the counterpart to the previous command, and copies a file from the target
to the host.

DDMS: Dalvik Debug Monitor Service
Installing the Android Software Development Kit adds DDMS to the Eclipse integrated
development environment, providing a window-oriented interface to Android-specific
debug information on the target. The most frequently used perspectives are displayed
in the upper-right corner of the Eclipse window. If there’s a DDMS button there, you
can just click on it to switch to DDMS. If not, in that same area there is a little window
symbol with a + sign in its upper-right corner. Clicking on this window will open a
menu of Perspectives, including DDMS.

The DDMS perspective has four panes by default. Starting from the upper left and going
left to right down the screen, these are:

Devices
This lists the available target devices connected to Eclipse, and the processes run-
ning on each device. The default emulator device is labeled with its port number
(5554). There are also some toolbar buttons in this pane, described later in this
section.

Threads/Heap/File Explorer
This provides three different views of what is going on in the target. The Threads
tab shows the currently active threads in the selected “client,” which is the appli-
cation selected in the Devices pane. To see the Threads information, you have to
click the “Update Threads” button at the top of the Devices pane. The Heap tab
shows the state of the VM’s heap memory, and is updated at each garbage collect.
Again, in order to see the Heap information, you need to enable it by clicking the
“Update Heap” button at the top of the Devices pane, and you may need to exercise
the application for a while until the VM decides a garbage collect is required before

74 | Chapter 5: Debugging Android Applications

the information will be updated. You can also force a garbage collect by clicking
on the “Cause GC” button in the Heap view.

Emulator Control
This gives you control of the Telephony and Location emulation functions:

Telephony Emulator
You can simulate voice and data operation in a variety of network states (un-
registered, home, roaming, searching, denied) and at a variety of network
speeds and latencies. It’s useful to vary these parameters during application
testing to be sure that your application responds appropriately in all typical
situations. You can also simulate incoming voice and SMS calls from a specific
number (to test Caller ID), and create the SMS message to be received.

Location Emulator
Here you can send a specific location fix to the Location Provider by entering
a latitude and longitude. You can alternatively load a GPX or KML file of
locations to be played back to the Location Provider in a continuous sequence,
as though the target was moving around.

Logcat/Console/Outline/Properties
This is similar to the “catchall” pane in the Debug perspective, providing a collec-
tion of useful tabs that display the indicated information.

Screen Capture
This isn’t a pane, but one of the toolbar buttons in the Display pane. It looks like
a very small Android screen, and when you click it, it captures and displays what
is currently showing on the target screen. It gives you the opportunity to save the
capture to a PNG file, which you can then use as you would any other image.

Traceview
Maybe the problem you’re trying to debug isn’t about functionality. Maybe your ap-
plication does exactly what it’s supposed to do, but takes too long to do it. Wouldn’t
it be nice to have a way of seeing how the methods within your classes are interacting,
and even to keep track of the relative time spent executing in each method? Traceview
is a utility that allow you just that kind of visibility. It consists of two parts, one that
you enable before running your program and one that you work with after the run in
order to diagnose your findings:

Runtime data collection
You can enable and disable logging for your application. While enabled, routines
are linked into your application that create a binary trace file on the target. The
trace file records every method instantiation and the time spent in each method.

Trace analysis
If you then copy the binary trace file from the target to your host, you can run a
trace analysis program that displays all the information from the file in graphical

Eclipse Java Editor | 75

form. You can easily observe which methods are consuming most of the runtime,
and drill down into those methods to find out which methods they in turn call and
which of them consume the most time.

Trace data collection

The routines to perform trace data collection are provided in the Android Software
Development Kit. All you have to do is:

1. Import the Debug package (android.os.Debug) into your application.

2. Call startMethodTracing when you want to start collecting trace information.

3. Call stopMethodTracing when you’re done.

The tracing routines always write their trace information to a file on the target’s SD
card. If you’re running on a real device, you need to plug in an SD card. If you’re
debugging on the emulator, you need to create a virtual SD card and tell the emulator
to use it:

1. Create a virtual SD card with mksdcard.

From the host command prompt, use the mksdcard utility to create a file that the
emulator can use as a virtual SD card:

$ mksdcard -l ANDROID 1024M filename

You can create the file anywhere you like, but the root directory for your project
is a good place. The utility will allocate a file as big as the size you’ve given in the
mksdcard command (1 GB in the example shown).

2. Tell the emulator to use the virtual SD card.

In Eclipse, choose Window → Preferences → Android → Launch. You’ll see a box
there for emulator options. Add the following option:

-sdcard filename

Use the complete path to the file, so the emulator can always find it, no matter
where it’s running from.

As an example of the code needed, let’s add tracing to MicroJobs and collect some data.
We add tracing to MicroJobs.java as follows:

...

import android.os.Debug;

...

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // start trace
 Debug.startMethodTracing("x");

76 | Chapter 5: Debugging Android Applications

...

 // stop tracing when application ends
 @Override
 public void onDestroy() {
 super.onDestroy();
 Debug.stopMethodTracing();
 }

Figure 5-12. Traceview Timeline Panel

Running MJAndroid now creates a file named x.trace on the virtual SD card on the
target. When tracing is enabled, the Dalvik virtual machine is noticeably slower to start
up and slower to run, because it is mapping the virtual SD card into memory, and
collecting all the method call and timing data for you as it runs. For this example we
went through a few UI operations and then closed the application.

To analyze x.trace, move it back to the host:

$ adb pull sdcard/x.trace x.trace

and start the Traceview program:

$ traceview pathnamex.trace

For the moment at least, Traceview expects the full pathname of the trace file.

You are rewarded with a display of all the methods that were called between the time
you started and stopped the trace—not just the methods in your application, but all
the methods that were called. The top part of the display is the Timeline Panel, which
looks something like Figure 5-12. The numbered line across the top is a timeline (in
milliseconds), with each application thread listed as a separate row. Within each row,
each method invocation is shown as a little colored block (a little hard to see at the
startup resolution). The colors map to a list of methods shown in Figure 5-12.

You can zoom in on a region of interest by moving the mouse into the timeline area,
clicking the left mouse button at the start time of interest, dragging to the stop time,
and releasing the button. The timeline then zooms in, as shown in Figure 5-13. As you

Eclipse Java Editor | 77

move the mouse from left to right, the timeline cursor shows the sequence of method
calls, and the method names are called out in the upper right.

The bottom part of the Traceview display lists each method, in declining order by the
amount of time spent in it. The first part of that list is shown in Figure 5-14.

The columns in this display have the following meanings:

Name
You can’t see colors here, but on the screen, the color in the color-coded box to
the left of each name tracks to the timeline shown in Figure 5-12. The 15 colors
get reused in order by inclusive time, as you go down the list.

Figure 5-13. Traceview zoom into Timeline Panel

Figure 5-14. Traceview list of methods

78 | Chapter 5: Debugging Android Applications

Incl% and Inclusive
The time (and percentage of total time) spent in this method, including all the
methods that it called. The times are in milliseconds, but they should be interpreted
with care. Because tracing slows down execution considerably, these times do not
represent the true runtimes under normal execution. They do provide accurate
relative timing information when comparing the runtimes of two methods.

Excl% and Exclusive
The time (and percentage of total time) spent actually executing in this method.
In other words, any time spent in nested functions is removed from these two fields.
The same timing caveats apply to Exclusive times as to Inclusive.

Calls+Recursive calls
Two values: the number of times this method was called externally and the number
of times it called itself.

Time/Call
Simply the quotient of the second column divided by the sum of the numbers in
the sixth column.

When you select a method by clicking on its name in the Profile Panel, Traceview
adjusts the pane to bring that method to the top of the view, and opens a list of Parent
and Child methods, as shown in Figure 5-15. “Parents” are methods that call this
method. “Children” are methods called by this method.

Figure 5-15. Traceview zoom into Profile Panel

Clearly, there is a lot of information available in the Traceview records, and a full ex-
ploration is beyond the scope of this book. We’ll leave other features of Traceview for
you to explore, such as the use of Native Tracing to trace the QEMU emulator itself,
the use of the other Debug methods to get timing information, and the use of the
dmtracedump utility to generate call graphs.

Eclipse Java Editor | 79

Summary
Debugging and profiling are large topics within themselves, and we have only scratched
the surface of the tools and methods available to you to develop Android applications.
Some references follow to other sources of information that might prove useful:

• Debugging with the Eclipse Platform, http://www.ibm.com/developerworks/library/
os-ecbug/

• For information about using the platform, http://www.eclipse.org

• Debugging Tasks (part of the Android SDK documentation), http://d.android.com/
guide/developing/debug-tasks.html

• Developing on a Device (part of the Android SDK documentation), http://d.android
.com/guide/developing/device.html

• Using Dalvik Debug Monitoring Service (DDMS) (part of the Android SDK doc-
umentation), http://d.android.com/guide/developing/tools/ddms.html

• Traceview: A Graphical Log Viewer (part of the Android SDK documentation),
http://d.android.com/guide/developing/tools/traceview.html

80 | Chapter 5: Debugging Android Applications

http://www.ibm.com/developerworks/library/os-ecbug/
http://www.ibm.com/developerworks/library/os-ecbug/
http://www.eclipse.org
http://d.android.com/guide/developing/debug-tasks.html
http://d.android.com/guide/developing/debug-tasks.html
http://d.android.com/guide/developing/device.html
http://d.android.com/guide/developing/device.html
http://d.android.com/guide/developing/tools/ddms.html
http://d.android.com/guide/developing/tools/traceview.html

CHAPTER 6

The ApiDemos Application

The ApiDemos application comes with the Android SDK, and can be found in the
samples/ApiDemos subdirectory. It’s a treasure trove of code that shows an application
developer how to use a lot of the Android API. Unfortunately, it’s left up to the student
to figure out how it works. That’s where this chapter comes in. Here, we’ll show you
the ropes of the ApiDemos application, and how to find the code that implements a
feature that you see. Once you get the hang of it, it’s a very useful place to find out how
to use Android.

For the remainder of this chapter, we’ll make a couple of assumptions when talking
about files and directories:

• Non-Java source files and subdirectories can be found in the samples/ApiDemos
subdirectory of the directory where you install the Android SDK.

• Java files are in the src/com/example/android/apis directory under the
samples/ApiDemos directory.

Application Setup in the Manifest File
Like every other Android application, the best place to get a sense of how the application
is strung together is the application’s AndroidManifest.xml file. Let’s take a look at part
of the AndroidManifest.xml file for ApiDemos, near the beginning of the file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.android.apis">

 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.VIBRATE" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.INTERNET" />

 <application android:name="ApiDemosApplication"
 android:label="@string/activity_sample_code"
 android:icon="@drawable/app_sample_code" >

81

 <uses-library android:name="com.google.android.maps" />

 <activity android:name="ApiDemos">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

Here are some of the highlights of the code:

Indicates that this XML file is an Android manifest.

Defines the default package for the application. This allows the developer to refer
to classes without expressing the fully qualified class each time. In terms of direc-
tories, it tells Android that classes for this application will be in samples/ApiDemos/
src/com/example/android/apis or some subdirectory thereof.

Sets up the various permissions required by this application. On a real phone, when
the user attempts to install the applications, she is asked whether she wants the
application to have the permissions listed. This way she knows that the application
has the potential to read and write contacts, use the camera, make the phone vibrate,
find the general area where the phone is at any given time, and use the Internet. If
the user does not trust the developer, she may decide not to install the application
after viewing the requested permissions.

Defines the application-wide parameters. The most interesting of these is
ApiDemosApplication, discussed in the following text.

Defines the startup Activity for the application, ApiDemos. This activity can be found
in the ApiDemos.java file. Its job is to discover all of the other demos in the appli-
cation and display them on a menu for the user to select. The ApiDemos class uses
information from res/strings.xml and AndroidManifest.xml to aid in this discovery
(look at the call to queryIntentActivities).

The ApiDemosApplication class, found in the top-level directory of the source code,
extends the Application class and has two methods: onCreate and onTerminate. The
onCreate method executes before any activities start. Application-level global variables
should be defined and initialized by the onCreate method. It’s also a good place to set
up any application-level default values.

There are several subdirectories under samples/ApiDemos/src/com/example/android/
apis, each corresponding to a high-level functional area of the Android API:

App
Examples of application-level constructs such as Activities, Alarms, Dialogs, and
Services.

82 | Chapter 6: The ApiDemos Application

Content
Describes how to read assets from a file, from resources, and from an XML file.

Graphics
Many types of graphics examples, such as arcs bitmap manipulation, clipping,
layers, and OpenGL.

Media
Examples of the MediaPlayer and the VideoView.

OS
Examples of how to invoke operating system services. As of this writing, it shows
how to use the VIBRATOR_SERVICE and SENSOR_SERVICE.

Text
Cool text tricks. The “Linkify” demo shows how to use the autoLink attribute of
the TextView to automatically set up links in text: the user clicks on a URL and the
browser comes up, or clicks on a phone number and the dialer appears. The “Log-
TextBox” demo shows how to create a simple screen log with a LogTextBox View.

Views
All of the various Android views: buttons, text boxes, autocompletion, date widg-
ets, etc. You can find the dozens of different Android GUI elements here, along
with their many options.

Finding the Source to an Interesting Example
The ApiDemos application has a lot of interesting examples that will help you learn
how to program an Android application. However, it’s not entirely obvious how to find
the source to any particular screen. The following procedure will help you find the
source to any ApiDemo you’re interested in. To understand the process, we’ll trace a
couple of demos: the “App/Activity/Custom Title” and the “Text/Linkify” examples.

Custom Title Demo
This technique works when the ApiDemos application stores information about the
demo in the res/strings.xml resource file:

1. After starting the ApiDemos application, find the particular demo by clicking on
the menu, and remember the path you took through the menu system. In this case,
you click on App, then Activity, and finally Custom Title.

2. Open the res/values/strings.xml file in a text editor such as Eclipse (actually, any
text editor that can do regular expression searches should work fine). Carry out a
regular expression search (Ctrl-F Ctrl-X in Eclipse) for each of the menu words
from step 1. Use the regular expression “.*” to separate the words. Thus, the search
term in our example is App.*Activity.*Custom.*Title. The search should return
zero or one result.

Finding the Source to an Interesting Example | 83

If you don’t find any results, use the procedure in the following section of this
chapter. Otherwise, the single result should be the contents of a string element.
The value of the name attribute of that string element is our search term for the next
step. For our example, this is activity_custom_title.

3. Open the AndroidManifest.xml file and search it for the string you found in the
previous step: activity_custom_title. The search should return only one result,
which should be part of the the value of the android:label attribute within an
activity element. That activity element should also contain an android:name at-
tribute. The value of this attribute contains the path to the Activity class that
implements the demo. In our example it’s .app.CustomTitle. This translates to the
CustomTitle.java files in the app subdirectory of the source tree.

In the end, therefore, the source for the App → Activity → Custom Title menu item can
be found in samples/ApiDemos/src/com/example/android/apis/app/CustomTitle.java.

Linkify Demo
This technique should work for demos that you can’t find with the previous method.
If the ApiDemos application doesn’t store information about the demo in res/
strings.xml, it gets its information directly from AndroidManifest.xml—and so will we.

1. After starting the ApiDemos application, find the particular demo through clicking
on the menu, and remember the path you took through the menu system. In this
case, you click on Text and then Linkify.

2. Open the AndroidManifest.xml file and search for the menu elements as in the
previous example. But this time the menu elements must be separated by slashes
instead of “.*” regular expressions. So in this case, search for the
text Text/Linkify (it doesn’t have to be a regular expression search).

The search should return only one result, which should be part of the the value of
the android:label attribute within an activity element. That element should also
contain an android:name attribute. The value of this attribute contains the path to
the Activity class that implements the demo. In our example, the path
is .text.Link. This translates to the Link.java file within the text subdirectory of
the source tree.

So in this example, the source for the Text → Linkify menu item can be found in samples/
ApiDemos/src/com/example/android/apis/text/Linkify.java.

Adding Your Own Examples to ApiDemos
The ApiDemos application is a handy sandbox for your own testing, and adding a new
menu entry and Activity to it is quite easy. But remember that whenever you upgrade
your API, all of your changes will be lost. Don’t add code to the ApiDemo that you
might want to save after an upgrade. It really is just a sandbox for quick tests.

84 | Chapter 6: The ApiDemos Application

With that caveat in mind, this section shows you how to add a new menu and screen
to the ApiDemos application. We’ll do that by adding a new ToastTest Activity with
a matching toast_test layout. We’ll then hook them into the ApiDemos application
by adding them to the AndroidManifest.xml file.

First, create a file named toast_test.xml in the res/layouts directory and add the following
content to lay out the widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout android:id="@+id/RelativeLayout01"
 android:layout_width="wrap_content "
 android:layout_height="wrap_content"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <TextView android:id="@+id/TextView01"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Guess my favorite color:" />
 <RadioGroup android:id="@+id/RadioGroup01"
 android:layout_below="@id/TextView01"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 <RadioButton android:id="@+id/redButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Red" />
 <RadioButton android:id="@+id/greenButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Green" />
 <RadioButton android:id="@+id/blueButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Blue" />
 </RadioGroup>
</RelativeLayout>

This layout creates a RelativeLayout layout manager named RelativeLayout01, speci-
fying up a TextView and a RadioGroup. The TextView presents the user with the text
“Guess My Favorite Color” while the RadioGroup, named RadioGroup01, contains three
RadioButton widgets: redButton, greenButton, and blueButton. They have the text
“Red”, “Green”, and “Blue”, respectively.

Next, create the view/ToastTest.java file. It simply responds to clicks from the layout:

package com.example.android.apis.view;

//Need the following import to get access to the app resources, since this
//class is in a sub-package.
import com.example.android.apis.R;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.RadioButton;
import android.widget.Toast;

public class ToastTest extends Activity{

Adding Your Own Examples to ApiDemos | 85

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.toast_test);

 final RadioButton redButton = (RadioButton) findViewById(R.id.redButton);
 redButton.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v){
 Toast.makeText(ToastTest.this, "Ooooh, red", Toast.LENGTH_SHORT).show();
 }
 });
 }
}

Here are some of the highlights of the code:

Calls the method from the superclass, which is the Activity class itself.

Sets the ContentView to use the toast_test layout, defined in the layout file you
created earlier.

Creates one of the RadioButton widgets, also going to the layout file.

Sets up the OnClickListener of the redButton to show a piece of “Toast” that says
“Ooooh, red” for a short period of time. Chapter 12 covers graphics programming
on Android.

Like toast in a toaster, this text pops up when activated. This technique can be quite
handy for debug code.

Finally, add a new activity element to the AndroidManifest.xml file:

<activity android:name=".view.ToastTest" android:label="Views/ToastTest" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.SAMPLE_CODE" />
 </intent-filter>
</activity>

This activity element should be added right after the TextSwitcher1 demo.

86 | Chapter 6: The ApiDemos Application

CHAPTER 7

Signing and Publishing
Your Application

Writing and running Android applications for your own amusement is all well and
good, but the point of creating new applications is to share them with others, whether
you charge money for them or give them away for free. Google has created Android
Market just for that purpose. Anyone with a connected Android phone can open the
Android Market application and immediately download any of hundreds (soon to be
thousands) of applications expressly designed for Android. These applications range
from the very practical (Navigation, Timesheets, File Managers, etc.) to the downright
silly (applications that make rude noises for the fun of it). There are a number of steps
any application developer will go through in preparing and submitting an application
to Android Market:

1. Thoroughly test the application—at least with the Android emulator, but also with
as many actual Android devices as you can lay your hands on. There is no substitute
for testing applications on real phones under real mobile network conditions to
prove that they work as you intend. The last thing you want is thousands of people
upset with you because your application doesn’t work the way they expect it to.

2. Decide whether you’d like to add an End User License Agreement (EULA) to your
application. This is normal practice in the industry (it’s the “click to accept” license
that you see when you download an application, even on desktops), and is strongly
advised. You can create your own license using one you’ve seen that you like, or
you can have a lawyer create a new one for you. Again, you don’t have to have a
EULA to submit your application, but it is strongly advised.

3. Create the icon and label you want displayed for your application in the Application
Launcher, and attach them to your application.

4. Clean up the application for release: turn off debugging, get rid of any extraneous
print or logging statements that you had in for debug, and take a final look at the
code to clean it up.

87

5. Make sure you’ve included a version number and a version name in your manifest
file, and of course, bump the version number if this is a new version of a previously
released application.

6. Create a signing certificate, and, if needed, a Map API Key, as described in this
chapter.

7. Recompile your application for release using Android Tools.

8. Sign your application using jarsigner and your signing certificate.

9. Retest your signed application to be sure no errors were entered during the process.

Test Your Application
You’ve probably been developing your application using the Android Emulator that is
part of the Android Developers Kit. If you haven’t already done so, take the time to
load your application on a real Android device (such as the T-Mobile G1 phone), and
test the application again. The emulator is very good, but there are a number of things
that can be different between the desktop emulation and a real device:

Screen resolution
The Android SDK emulates a device like the T-Mobile G1, with a half VGA screen
(320×480), roughly 3.2 inches in diagonal measure. Real Android devices will have
a variety of screen shapes, sizes, and resolutions, so you need to know how your
application will function on those different devices.

Screen orientation
The SDK emulates only portrait mode, with the screen taller than it is wide. Many
Android devices (including the T-Mobile G1) support switching screen orienta-
tion, and you need to be sure your application behaves appropriately in all
orientations.

Touchscreen operation
The emulator uses mouse clicks and movements to mimic the touchscreen on a
real device, but there’s nothing like a real touchscreen. On a real device you can
get a much better sense of what it will be like for users to interact with your
application.

CPU and network performance
On the emulator, you are using your PC or Mac to emulate an ARM processor.
The application’s speed is tied to the speed of your underlying host processor,
which typically consists of multiple multigigahertz multiprocessors. If your appli-
cation is at all performance sensitive, you’ll want to see how it functions on real
devices. Similarly, the emulator is using your host’s network connection, which
may be broadband, to access the Internet. On a real device your network connec-
tion will either be WiFi or a mobile network (GPRS, EDGE, HSPA, or 3G, de-
pending on your location), and the connection’s speed and latency will be changing

88 | Chapter 7: Signing and Publishing Your Application

as the phone moves around. You want to know how these factors affect the oper-
ation of your application, and how it appears to the user.

The emulator is quite flexible, and some of these things can be tested to some degree
by manipulating the emulator setup in DDMS (see “DDMS: Dalvik Debug Monitor
Service” on page 74 for more about DDMS). But again, it is important to stress that
nothing can replace testing on real Android devices.

Attach an End User License Agreement If Desired
Virtually every application that you download onto a desktop or notebook computer
will contain an End User License Agreement. You should seriously consider whether
you want to attach such a license to your application and have users agree to it before
they install the application on their phone. Typically it limits what users are allowed
to do with the application, defines whether it can be used for commercial purposes,
specifically does not allow reverse engineering, and tries to protect you, the author,
should something go wrong and someone has reason to bring a lawsuit against you.
There are many such EULAs available on the Internet. You can either adopt one of
those as your own or hire a lawyer to create a unique one for you, but the use of a EULA
is strongly advised.

Create and Attach an Icon and Label
When your application is installed (on either the emulator or a real device), an icon
and a label are placed on the Application Launcher that is part of your Android Desktop.
This is how most users will launch your application, so you need a small graphic (in
the form of a PNG file) for the icon, and a short label for your program. Icons are small
square (64×64 pixel) pictures. Figure 7-1 shows the one we used for MJAndroid.

Figure 7-1. MJAndroid icon

The icon and the label are both assigned in the AndroidManifest.xml file. Here is the
section of the file for MJAndroid that defines the icon (in the file icon2.png, located
under the res/drawable directory) and the label (from the strings.xml file under res/
values):

 <application android:icon="@drawable/icon2" android:debuggable="true">
 <uses-library android:name="com.google.android.maps" />
 <activity android:name=".MicroJobs" android:label="@string/app_name">
 <intent-filter>
...

Create and Attach an Icon and Label | 89

Clean Up for Release
If you’re like most developers, your path to completing your application was not linear.
You tried some things, kept some, stopped using others, put in diagnostics when things
didn’t work quite right, named some things that you later wished you’d named differ-
ently, and so forth. Now is the time to clean all that up. Once your application is out
in the real world, you’ll have to support this version, and it would be good for you if
the code were as clean as possible:

• Turn off debug and logging code. You don’t really want your deployed application
eating up precious mobile phone storage by generating logfiles, and the user
won’t be able to understand your debug messages anyway. If you haven’t already,
create a boolean to switch them off and leave them off for now. And remove
android:debuggable=true from the AndroidManifest.xml file (see the earlier exam-
ple) to make sure debug is turned off.

• Clean up your code wherever possible. Make the naming consistent, reorder meth-
ods in some reasonable way, and try to improve readability. Even if you’re the next
person to look at it, you won’t remember what you did six months from now.

• Remove any test data that you included—particularly anything that’s private or
proprietary (like your name and address in a Contacts database).

• Delete any extraneous files from the project: old logfiles, source files that you no
longer include in the application, etc.

Version Your Application
All applications submitted to Android Market must be versioned and named. You do
that with simple statements in AndroidManifest.xml, as shown in the following segment
of MJAndroid’s manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.microjobsinc.mjandroid" android:versionCode="1"
 android:versionName="1.0">

Obviously you want the version numbering and naming to make sense. Android Market
really only cares about the versionCode, which needs to be monotonically increasing
for each release of your application, so a downloading device will know when to up-
grade to new versions.

Obtaining a Signing Certificate and API Key
Before you can publish your application to Android Market and have every Android
user in the world download it, you first must sign your application. In fact, you’ve been
signing your application all along, because the Android Software Development Kit

90 | Chapter 7: Signing and Publishing Your Application

generates a debug signature that is used every time you run your application from
Eclipse. The catch is that you cannot use the debug signature to publish your applica-
tion to the world at large; you must generate a new signature.

If you’re familiar with other mobile development environments (J2ME, Symbian,
BREW, etc.), you’re probably an old hand at signing applications. But if you’re new to
developing mobile applications, you may be asking yourself what all this signing stuff
is for, anyway. Android uses application signing for only one purpose: to ensure that
applications that claim to be from the same developer actually are. Applications from
the same developer have special capabilities, discussed in the next section.

Google has stated that one of its intentions with Android was to minimize the hassle
of getting applications signed. You don’t have to go to a central signing authority to
get a signing certificate; you can create the certificate yourself. Once you generate the
certificate, you can sign your application using the jarsigner tool that comes with the
Java JDK. Once again, you don’t need to apply for or get anyone’s approval. As you’ll
see, it’s about as straightforward as signing can be.

Getting a Signing Certificate for an Application You Are Going to Ship
To sign your application, you are going to create an encrypted signing certificate and
use it to sign your application. You can sign every Android application you develop
with the same signing certificate. You can create as many signing certificates as you
want, but you really need only one for all your applications. And using one certificate
for all your applications lets you do some things that you couldn’t do otherwise:

Simplify upgrades
Signing certificates are tied to the application package name, so if you change the
signing certificate you use with subsequent versions of your application, you’ll have
to change the package name, too. Changing certificates is manageable, but messy.

Multiple applications per process
When all your applications share the same signing certificate, they can run in the
same Linux process. You can use this to separate your application into smaller
modules (each one an Android application) that together make up the larger ap-
plication. If you were to do that, you could update the modules separately and they
could still communicate freely.

Code/data sharing
Android lets you enable or restrict access to parts of your application based on the
requester’s signing certificate. If all your applications share the same certificate, it’s
easy for you to reuse parts of one application in another.

One of the things you’ll be asked when you generate a key pair and certificate is the
validity period you desire for the certificate. Google recommends that you set it for at
least 25 years, and in fact, if you’re going to use Android Market to distribute your

Obtaining a Signing Certificate and API Key | 91

application, it requires a validity date at least until October 22, 2033 (25 years to the
day from when they opened Android Market) for your certificate.

Generating a key pair (public and private keys) and a signing certificate

To generate a pair of public/private keys, use a tool called keytool, which came with
the Sun JDK when you installed it onto your development computer. keytool asks you
for some information and uses that to generate the pair of keys:

• A private key that will be kept in a keystore on your computer, secured with pass-
words. You will use the private key to sign your application, and if you need a Map
API Key for your application, you will use the MD5 fingerprint of the signing cer-
tificate to generate the Map API Key.*

• A public key that Android can use to decrypt your signing certificate. You will send
the public key along with your published application so that it can be made avail-
able in the runtime environment. Signing certificates are actually checked only at
install time, so once installed, your application is good to run, even if the certificate
or keys expire.

keytool is pretty straightforward. From your operating system’s command line, enter
something like:

$ keytool -genkey -v -keystore microjobs.keystore -alias mjkey -keyalg RSA
 -validity 10000

This asks keytool to generate a key pair and self-signed certificate (-genkey) in verbose
mode (-v), so you get all the information, and put it in a keystore called
microjobs.keystore (-keystore). It also says that in the future you want to refer to that
key by the name mjkey (-alias), and that keytool should use the RSA algorithm for
generating public/private key pairs (-keyalg). Finally, we say that we’d like the key to
be valid for 10,000 days (-validity), or about 27 years.

keytool will prompt you for some things it uses to build the key pair and certificate:

• A password to be used in the future when you want to access the keystore

• Your first and last names

• Your organizational unit (the name for your division of your company, or some-
thing like “self” if you aren’t developing for a company)

• Your organization name (the name of your company, or anything else you want to
use)

• The name of your city or locality

* If you’re not familiar with MD5, you can find many references on the Internet. For our purposes, you can
think of it as a hash algorithm that creates a 128-bit fingerprint of an arbitrarily long string. It is often used
to validate downloaded files on the Internet, and here it is a way of conveniently validating and condensing
a signing certificate so it can be easily verified and compared by Google Maps.

92 | Chapter 7: Signing and Publishing Your Application

• The name of your state or province

• The two-letter country code where you are located

keytool will then echo all this information back to you to make sure it’s accurate, and
if you confirm the information, will generate the key pair and certificate. It will then
ask you for another password to use for the key itself (and give you the option of using
the same password you used for the keystore). Using that password, keytool will store
the key pair and certificate in the keystore.

You can get more information about security, key pairs, and the keytool utility on Sun’s
website at http://java.sun.com/j2se/1.5.0/docs/tooldocs/#security.

Getting a Signing Certificate While Debugging
When you’re creating and debugging your application that uses a MapView, or when
you’re running a demo application like MJAndroid, you still need a valid Map API Key
to get map tiles from Google Maps, and you need the fingerprint of your debug signing
certificate to obtain a Map API Key. You can’t just use the apiKey that we have coded
into the MJAndroid source files, because it is tied to the signing certificate that was
generated by our debug environment. Your debug environment will generate its own,
different signing certificate for you to use, so you need to obtain a Map API Key to
match.

There are two steps to getting the key:

1. Get a copy of the MD5 fingerprint for your Debug signing certificate.

2. Use that fingerprint to obtain a valid Map API Key from Google and enter it into
AndroidManifest.xml.

Getting the MD5 fingerprint of your Debug signing certificate

When the Android SDK automatically generates a Debug signing certificate for you, it
places it in a keystore called debug.keystore. The trick is to find this keystore. At least
for the current version of the SDK, as this is being written, the location is operating
system dependent:

• Under Linux and Mac OS X, it is in the .android subdirectory under your home
directory: ~/.android/debug.keystore.

• Under Windows Vista, it’s a little harder to find; it’s under your personal
Application Data directory: C:\Users\your_username\AppData\Local\Android
\debug.keystore.

• Windows XP is similar to Vista: C:\Documents and Settings\your_username\Local
Settings\Application Data\Android\debug.keystore (unlike Vista, you will need to
use a quoted string for the XP shell).

Obtaining a Signing Certificate and API Key | 93

http://java.sun.com/j2se/1.5.0/docs/tooldocs/#security

Once you’ve found debug.keystore, keytool can give you the MD5 fingerprint of your
Debug signing certificate. Under Linux or OS X you’d type:

$ keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore -storepass
 android -keypass android

For Vista or XP, just substitute the correct location in the -keystore option. keytool
prints the date the Debug signing certificate was created and the MD5 fingerprint. As
an interesting note, Debug signing certificates are good for 365 days after creation.

What Happens When My Debug Signing Certificate Expires?
After your certificate expires, you’ll get a build error whenever you try to build your
application. The error will be displayed on the Android console (one of the tabs in the
bottom pane of the Java and DDMS Perspectives), and it will say something like:

debug:
[echo] Packaging bin/samples-debug.apk, and signing it with a debug key...
[exec] Debug Certificate expired on 8/4/08 3:43 PM

To fix it, just delete your debug.keystore file (see the earlier list for its location in different
host operating systems). The next time you build, the Android SDK will generate a new
debug.keystore with a new Debug signing certificate, and your application can build
and run.

Now that you have the MD5 fingerprint of your Debug Signing Certificate, you can use
it to get a valid Map API Key for your system.

Getting a Map API Key from Google

Now that you have a signing certificate to use for your application, you can apply to
Google for a Map API Key. Map API Keys are tied to a signing certificate, so obviously
the Map API Key you get will work only with applications signed with the same cer-
tificate (another good reason for sticking with the same certificate for all your applica-
tions). Getting the key is pretty easy, and it’s free.

When an application that contains a MapView runs, it requests map “tiles” from Goo-
gle Maps via the Internet. As part of that request, it sends the Map API Key that was
obtained when the developer signed up with Google, as well as the MD5 fingerprint of
the application’s signing certificate. Google Maps checks to see that the key is registered
to a developer, and then checks to see that the Map API Key matches the one on file
for applications with that signing certificate fingerprint. If they match, it sends the
requested tiles. If they don’t match, no tiles are sent.

So we’re going to need the MD5 fingerprint of the signing certificate that we just created.
Fortunately, keytool can get that for us:

$ keytool -list -alias mjkey -keystore microjobs.keystore

94 | Chapter 7: Signing and Publishing Your Application

keytool asks for the passwords to the keystore (and key, if they’re different), and prints
out the MD5 fingerprint in hexadecimal. Use your mouse to copy the fingerprint so
you can paste it into the Google page later.

Now you can go to the Google Map API Key website at http://code.google.com/android/
maps-api-signup.html to actually get the Map API Key. The Terms of Service are shown
in a text box. Read them, and if appropriate, click on the checkbox that indicates you
accept. Paste the MD5 fingerprint into the form, click the “Generate API key” button,
and the website will ask you to log into your Google account. If you don’t have a Google
account, you can quickly create one on the spot.

Once you log in, the website returns the Map API Key, which can be used with any
application that uses the signing certificate whose fingerprint you entered. It’s a long
alphanumeric string, so you will want to copy it into your clipboard and paste it into
the XML layout file for your Map Activity.

As an example, the XML layout file for MJAndroid’s Map Activity (called MicroJobs)
has the following section defining the MapView and the API Key that matches our
debug environment:

<com.google.android.maps.MapView
 android:id="@+id/mapmain"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:clickable="true"
 android:apiKey="0P18K0TAE0dO2GifdtbuScgEGLWe3p4CYUQngMg"
/>

Of course, you will have to substitute your own apiKey for ours.

Signing Your Application
We’re almost ready to sign your application, but first you need to create an unsigned
version that you can sign with your signature certificate. To do that, in the Package
Explorer window of Eclipse, right-click on your project name. You’ll get a long pop-
up menu; toward the bottom, click on Android Tools. You should see another menu
that includes the item you want: “Export Unsigned Application Package...”. This item
takes you to a File Save dialog box, where you can pick the place to save the unsigned
version of your apk file. It doesn’t matter where you put it—just pick a place you can
remember.

Now that you have an unsigned version of your apk file, we can go ahead and sign it
using jarsigner. Open a terminal or command window in the directory where you
stored the unsigned apk file. Here’s the line we used to sign MJAndroid, using the key
we generated earlier in the keystore microjobs.keystore:

$ jarsigner -verbose -keystore microjobs.keystore MJAndroid.apk mjkey

Signing Your Application | 95

http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html

Congratulations! You now have a signed version of your application that can be loaded
and run on any Android device. But before you send it in to Android Market, there’s
one more intervening step....

Retesting Your Application
If everything went smoothly, your application is now signed and will function just as
well as it did before you went through this process. But to be sure things went smoothly,
it is wise to retest your application, again testing on real Android devices where possible.
You really don’t want thousands of people downloading a broken application attrib-
uted to you, so just to be safe, retest on as many Android devices as you can get your
hands on.

Publishing on Android Market
After you’re satisfied that your application runs as expected on real Android devices,
you’re ready to upload to Android Market, Google’s service for publishing and down-
loading Android applications. The procedure is pretty straightforward:

1. Sign up as an Android Developer (if you’re not already signed up).

2. Upload your signed application.

Signing Up As an Android Developer
Go to Google’s website at http://market.android.com/publish, and fill out the forms
provided. As this is written, Android Market is still in beta, and you will be asked to:

• Use your Google account to log in (if you don’t have a Google account, you can
get one for free by following the Create Account link on the login page).

• Agree to the Android Market Terms of Service.

• Pay a one-time fee of $25 (payable by credit card via Google Checkout; again, if
you don’t have an account set up, you can do so quickly).

The forms ask for a minimal amount of information—your name, phone number,
etc.—and you are signed up.

Uploading Your Application
Now you can go to http://market.android.com/publish/Home to upload your applica-
tion. To identify and categorize your application, you will be asked for the following:

Application apk file Name and Location
The apk file of your application, signed with your private signature certificate.

96 | Chapter 7: Signing and Publishing Your Application

http://market.android.com/publish
http://market.android.com/publish/Home

Title and Description
These are very important, because they are the core of your marketing message to
potential users. Try to make the title descriptive and catchy at the same time, and
describe the application in a way that will make your target market want to down-
load it.

Application Type
There are currently two choices: Applications or Games.

Category
The allowable list of categories varies depending on Application Type. The
currently available categories for Applications are: Communications, Demo, En-
tertainment, Finance, Lifestyle, Multimedia, News & Weather, Productivity, Ref-
erence, Shopping, Social, Software Libraries, Tools, and Travel. For Games, the
currently available categories include: Arcade & Action, Brain & Puzzle, Cards &
Casino, and Casual.

Price
This must be “Free” under the beta version of Android Market. Google has said
they will enable charging for applications in the near future (maybe by the time
you read this).

Geography
You can limit where your application is available, or choose to make it available
everywhere.

Finally, you are asked to confirm that your application meets the Android Content
Guidelines and that it does not knowingly violate any export laws. After that, you can
upload your apk file, and within a few days your application will appear on the Android
Market online catalog, accessible from any connected Android device. There is cur-
rently no way to access Android Market directly from your PC or Mac, so you’ll have
to use your Android phone to find out when your application is available for download.

Publishing on Android Market | 97

PART II

Programming Topics

After getting ready to write your own programs by reading Part I, you can learn how
to make the most of Android’s libraries in this part of the book. We cover databases,
graphics, inter-process communication, and telephony.

CHAPTER 8

Persistent Data Storage: SQLite
Databases and Content Providers

To accomplish many of the activities offered by modern mobile phones, such as track-
ing contacts, events, and tasks, the operating system and applications must be adept
at storing and keeping track of large quantities of data. Most of this data is structured
like a spreadsheet, in the form of rows and columns. Each Android application is like
an island unto itself, in that each application is only allowed to read and write data that
it has created, but sharing data across application boundaries is necessary. Android
supports the content provider feature mentioned in Chapter 1 so that applications can
share data.

In this chapter we examine two distinct data access APIs that the Android framework
offers:

SQLiteDatabase
Android’s Java interface to its relational database, SQLite. It supports an SQL im-
plementation rich enough for anything you’re likely to need in a mobile applica-
tion, including a cursor facility.

ContentProvider
An interface used between applications. The server application that hosts the data
manages it through basic create, read, update, and delete (CRUD) operations. The
client application uses a similar API, but the Android framework transmits the
client’s requests to the server. We’ll show both the server API and the client API
in this chapter.

Databases
Data is best stored in a relational database format if it can include many instances of
the same type of thing. Take a contact list, for instance. There are many contacts, all
of whom potentially have the same types of information (address, phone number, etc.).
Each “row” of data stores information about a different person, while each “column”

101

stores a specific attribute of each person: names in one column, addresses in another
column, and home phone numbers in a third.

Android uses the SQLite database engine, a self-contained, transactional database
engine that requires no separate server process. It is used by many applications and
environments beyond Android, and is being actively developed by a large community.

The process that initiates a database operation, such as a SELECT or UPDATE, does the
actual work of reading or writing the disk file that contains the database in order to
fulfill the request. With SQLite, the database is a simple disk file. All of the data struc-
tures making up a relational database—tables, views, indexes, etc.—are within this file.

SQLite is not a Google project, although Google has contributed to it. SQLite has an
international team of software developers who are dedicated to enhancing the soft-
ware’s capabilities and reliability. Some of those developers work full time on the
project.

Reliability is a key feature of SQLite. More than half of the code in the project is devoted
to testing the library. The library is designed to handle many kinds of system failures,
such as low memory, disk errors, and power failures. In no case should the database
be left in an unrecoverable state: this would be a showstopper on a mobile phone, where
critical data is often stored in a database. If that database were susceptible to easy
corruption, the mobile phone could become an expensive paperweight if the battery
were to fail at an inopportune time.

This is not a book on SQL, so we will not go into much detail about the database
commands themselves. Ample documentation about SQL in general and SQLite in
particular can be found on the Web. But the SQL we use in our examples should be a
good starting point for your own applications.

We’ll use the MicroJobsDatabase.java file from our MicroJobs example application to
discuss how to create and use a SQLite database using Android. This is the subject of
the next section.

Basic Structure of the MicroJobsDatabase Class
In our example, the MicroJobsDatabase.java file completely encapsulates all of the SQL
logic necessary to work with the database. All of the other Java classes in the MicroJobs
application work with standard Java classes or Cursors and are unaware of how the
data is actually stored. This is good programming practice and should be emulated in
all of your Android applications that use databases.

Before we delve too deeply into the guts of creating a database and selecting data from
it, it’s important to understand the general layout of the MicroJobsDatabase class.

MicroJobsDatabase inherits from the abstract SQLiteOpenHelper class, and therefore
must override the onCreate and onUpgrade methods. The onCreate method is automat-
ically called when the application starts for the first time; its job is to create the database.

102 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

As newer versions of the application are shipped, the database on the phone tends to
be updated, a task that falls to the onUpgrade method. When you ship a new version of
a database, you must also increment the version number, as we’ll explain.

The general elements in MicroJobsDatabase code are:

Constants
The MicroJobsDatabase class defines two important constants:

DATABASE_NAME
This holds the filename of the database, "MicroJobs" in this case.

Here is the full path to the MicroJobs file: /data/data/
com.microjobsinc.mjandroid/databases/MicroJobs. You can
use the adb pull command line on your desktop (see the dis-
cussion of adb in “The Tools” on page 57) to pull the database
from the emulator or developer device and then debug it using
the SQLite3 executable on the desktop.

DATABASE_VERSION
This defines the database version understood by the software that defines
the constant. If the version of the database on the machine is less than
DATABASE_VERSION, the application should run onUpgrade to upgrade the data-
base to the current level.

Constructor
The constructor for the database in this program, MicroJobsDatabase, uses the
super function to call its parent’s constructor. The parent does most of the work
of creating the database object. One thing our MicroJobsDatabase constructor has
to do is store the Context object. This step is not required in applications whose
database code is encapsulated within an enclosing content provider class, because
the ContentProvider class has a getContext call that will provide the Context object
when necessary. Since MicroJobs is a standalone database class, it has to keep the
Context object around in its own private variable. In the case of MicroJobs, the
Context object is really the Activity object that opens the database. An Activity is
a Context. The Context object is the interface to application-global resources and
classes as well as application-level operations, such as broadcasting Intents and
launching activities.

onCreate
When an Android application attempts to read or write data to a database that
does not exist, the framework executes the onCreate method. The onCreate method
in the MicroJobsDatabase class shows one way to create the database. Because so
much SQL code is required to create the database and populate it with sample data,
we’ve chosen to segregate all of the SQL code invoked by onCreate into the
strings.xml resource file; this makes the Java code much more readable but forces

Databases | 103

the developer to look in two separate files to see what’s really going on. When we
look at the custom Cursor classes later in this chapter, we’ll see that SQL can be
embedded into the application source code as well. It’s really a matter of style.

To actually create the database, the first line of the onCreate method loads the
SQL string referenced by the MicroJobsDatabase_onCreate resource identifier
into a String array named sql. Note the following code snippets from
MicroJobsDatabase.java:

String[] sql =
 mContext.getString(R.string.MicroJobsDatabase_onCreate).split("\n");

and from strings.xml:

<string name="MicroJobsDatabase_onCreate">"
CREATE TABLE jobs (_id INTEGER PRIMARY KEY AUTOINCREMENT, employer_id INTEGER,
 title TEXT, description TEXT, start_time INTEGER, end_time INTEGER,
 status INTEGER);
CREATE TABLE employers(_id INTEGER, employer_name TEXT, ...
CREATE TABLE workers(_id INTEGER PRIMARY KEY AUTOINCREMENT, ...
CREATE TABLE status(_id INTEGER PRIMARY KEY AUTOINCREMENT, ...
INSERT INTO status (_id , status) VALUES (NULL, 'Filled');
INSERT INTO status (_id , status) VALUES (NULL, 'Applied For');
INSERT INTO status (_id , status) VALUES (NULL, 'Open');
...
"</string>

The single getString line of Java code loads the SQL required to create the data-
base, along with a reasonable amount of test data.

One crucial piece of information mentioned only briefly in the An-
droid documentation is that you must either escape all single
quotes and double quotes with a backslash (\" or \') within a re-
sources string or enclose the entire string in either single or double
quotes. If single and double quotes are mixed in a resource
string, they must be escaped. In the case of the MicroJobs
Database_onCreate string just shown, notice that the entire thing is
surrounded with double quotes.

The rest of the onCreate method runs each line of SQL. The entire process runs under
a transaction so that it will either execute completely or be rolled back and have
no effect at all on the database.

onUpdate
In the MicroJobs application, the onUpdate method is very similar in structure to
the onCreate method. However, the contents of the strings.xml resource file are
quite different:

<string name="MicroJobsDatabase_onUpgrade">"
DROP TABLE IF EXISTS jobs
DROP TABLE IF EXISTS employers

104 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

DROP TABLE IF EXISTS workers
DROP TABLE IF EXISTS status
"</string>

The opening <string> tag is followed by a double quotation mark to start a string,
and a closing quotation mark ends the strings before the </string> tag. Within the
string are four rather drastic SQL commands. To support the demonstration code
in this book, we cheat a little. The “upgrade” code removes the old database and
re-creates it with whatever is in the current version of the code. Although this is
nice for a book, it won’t work very well in real life. Your customers won’t be very
happy if they have to re-key their information each time they upgrade software
versions! A real application would have several upgrade scripts, one for each ver-
sion that might be out in the wild. We would execute each upgrade script, one at
a time, until the phone’s database is completely up-to-date.

The structural parts of MicroJobsDatabase.java follow. The custom Cursors and the
public functions that return them are discussed next.

MicroJobsDatabase.java (structure):
package com.microjobsinc.mjandroid;

import ...

/**
 * Provides access to the MicroJobs database. Since this is not a Content Provider,
 * no other applications will have access to the database.
 */
public class MicroJobsDatabase extends SQLiteOpenHelper {
 /** The name of the database file on the file system */
 private static final String DATABASE_NAME = "MicroJobs";
 /** The version of the database that this class understands. */
 private static final int DATABASE_VERSION = 1;
 /** Keep track of context so that we can load SQL from string resources */
 private final Context mContext;

 /** Constructor */
 public MicroJobsDatabase(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 this.mContext = context;
 }

 /** Called when it is time to create the database */
 @Override
 public void onCreate(SQLiteDatabase db) {
 String[] sql =
 mContext.getString(R.string.MicroJobsDatabase_onCreate).split("\n");
 db.beginTransaction();
 try {
 // Create tables and test data
 execMultipleSQL(db, sql);
 db.setTransactionSuccessful();
 } catch (SQLException e) {
 Log.e("Error creating tables and debug data", e.toString());

Databases | 105

 throw e;
 } finally {
 db.endTransaction();
 }
 }

 /** Called when the database must be upgraded */
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log.w(MicroJobs.LOG_TAG, "Upgrading database from version " + oldVersion +
 " to " +
 newVersion + ", which will destroy all old data");

 String[] sql =
 mContext.getString(R.string.MicroJobsDatabase_onUpgrade).split("\n");
 db.beginTransaction();
 try {
 execMultipleSQL(db, sql);
 db.setTransactionSuccessful();
 } catch (SQLException e) {
 Log.e("Error upgrading tables and debug data", e.toString());
 throw e;
 } finally {
 db.endTransaction();
 }

 // This is cheating. In the real world, you'll need to add columns, not
 rebuild from scratch.
 onCreate(db);
 }

 /**
 * Execute all of the SQL statements in the String[] array
 * @param db The database on which to execute the statements
 * @param sql An array of SQL statements to execute
 */
 private void execMultipleSQL(SQLiteDatabase db, String[] sql){
 for(String s : sql)
 if (s.trim().length()>0)
 db.execSQL(s);
 }
}

Here are some of the highlights of the code:

Constructs the MicroJobsDatabase object. We pass the parent class the database
name and version, and it keeps track of when to simply open the database and when
to upgrade the version. The database itself is not opened here—that happens in
response to a getReadableDatabase or getWritableDatabase call. We also keep a pri-
vate reference to the Context object in the constructor.

Retrieves strings containing SQL code, which we have chosen to store in a resource
file for easier readability and maintenance.

106 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

Begins the transaction within which all the SQL statements will execute to create
the database.

Ends the transaction, creating the database.

Function to call in order to upgrade the database.

Function that executes each SQL statement retrieved by item 2.

Reading Data from the Database
There are many ways to read data from an SQL database, but they all come down to a
basic sequence of operations:

1. Create an SQL statement that describes the data that you need to retrieve.

2. Execute that statement against the database.

3. Map the resulting SQL data into data structures that the language you’re working
in can understand.

This process can be very complex in the case of object-relational mapping software, or
relatively simple when writing the queries directly into your application. The difference
is fragility. Complex ORM tools shield your code from the complexities of database
programming and object mapping by moving that complexity elsewhere. The result is
that your code is more robust in the face of database changes, but at the cost of complex
ORM setup and maintenance.

The simple approach of writing queries directly into your application works well only
for very small projects that will not change much over time. Applications with database
code in them are very fragile because as the database changes, any code that references
those changes must be examined and potentially changed.

A common middle-ground approach is to sequester all of the database logic into a set
of objects whose sole purpose is to translate application requests into database requests
and deliver the results back to the application. This is the approach we have taken with
the MicroJobs application; all of the database code is contained in a single class in the
file MicroJobsDatabase.java.

Android gives us the ability to customize Cursors, and we use that ability to further
reduce code dependencies by hiding all of the information about each specific database
operation inside a custom cursor. Each custom cursor is a class within the
MicroJobsDatabase class; the one that we’ll look at in this chapter is the JobsCursor.

The interface to the caller in the getJobs method of MicroJobsDatabase appears first in
the code that follows. The method’s job is to return a JobsCursor filled with jobs from
the database. The user can choose (through the single parameter passed to getJobs) to
sort jobs by either the title column or the employer_name column:

public class MicroJobsDatabase extends SQLiteOpenHelper {
...

Databases | 107

 /** Return a sorted JobsCursor
 * @param sortBy the sort criteria
 */
 public JobsCursor getJobs(JobsCursor.SortBy sortBy) {
 String sql = JobsCursor.QUERY + sortBy.toString();
 SQLiteDatabase d = getReadableDatabase();
 JobsCursor c = (JobsCursor) d.rawQueryWithFactory(
 new JobsCursor.Factory(),
 sql,
 null,
 null);
 c.moveToFirst();
 return c;
 }
...
 public static class JobsCursor extends SQLiteCursor{
 public static enum SortBy{
 title,
 employer_name
 }
 private static final String QUERY =
 "SELECT jobs._id, title, employer_name, latitude, longitude, status "+
 "FROM jobs, employers "+
 "WHERE jobs.employer_id = employers._id "+
 "ORDER BY ";
 private JobsCursor(SQLiteDatabase db, SQLiteCursorDriver driver,
 String editTable, SQLiteQuery query) {
 super(db, driver, editTable, query);
 }
 private static class Factory implements SQLiteDatabase.CursorFactory{
 @Override
 public Cursor newCursor(SQLiteDatabase db,
 SQLiteCursorDriver driver, String editTable,
 SQLiteQuery query) {
 return new JobsCursor(db, driver, editTable, query);
 }
 }
 public long getColJobsId()
 {return getLong(getColumnIndexOrThrow("jobs._id"));}
 public String getColTitle()
 {return getString(getColumnIndexOrThrow("title"));}
 public String
 getColEmployerName()
 {return getString(getColumnIndexOrThrow("employer_name"));}
 public long getColLatitude()
 {return getLong(getColumnIndexOrThrow("latitude"));}
 public long getColLongitude()
 {return getLong(getColumnIndexOrThrow("longitude"));}
 public long getColStatus(){return getLong(getColumnIndexOrThrow("status"));}
 }

Here are some of the highlights of the code:

Function that fashions a query based on the user’s requested sort column (the
sortBy parameter) and returns results as a cursor.

108 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

Creates the query string. Most of the string is static (the QUERY variable), but this line
tacks on the sort column. Even though QUERY is private, it is still available to the
enclosing class. This is because the getJobs method and the the JobsCursor class are
both within the MicroJobsDatabase class, which makes JobsCursor’s private data
members available to the getJobs method.

To get the text for the sort column, we just run toString on the enumerated value
passed by the user. The enumeration is defined at item 8. We could have defined an
associative array, which would give us more flexibility in naming variables, but this
solution is simpler. Additionally, the names of the columns pop up quite nicely in
Eclipse’s autocompletion.

Retrieves a handle to the database.

Creates the JobsCursor cursor using the SQLiteDatabase object’s rawQueryWith
Factory method. This method lets us pass a factory method that Android will use
to create the exact type of cursor we need. If we had used the simpler rawQuery
method, we would get back a generic Cursor that lacked the special features of
JobsCursor.

As a convenience to the caller, moves to the first row in the result. This way, the
cursor is returned ready to use. A common mistake is forgetting the moveToFirst call
and then pulling your hair out trying to figure out why the Cursor object is throwing
exceptions.

The cursor is the return value.

Class that creates the cursor returned by getJobs.

Simple way to provide alternate sort criteria: store the names of columns in an
enum. This variable is used in item 2.

Constructor for the customized cursor. The final argument is the query passed by
the caller.

Factory class to create the cursor, embedded in the JobsCursor class.

Creates the cursor from the query passed by the caller.

Returns the cursor to the enclosing JobsCursor class.

Convenience functions that extract particular columns from the row under the cur-
sor. For instance, getColTitle returns the value of the title column in the row
currently referenced by the cursor. This separates the database implementation from
the calling code and makes that code easier to read.

A sample use of the database follows. The code gets a cursor, sorted by title, through
a call to getJobs. It then iterates through the jobs.

MicroJobsDatabase db = new MicroJobsDatabase(this);
JobsCursor cursor = db.getJobs(JobsCursor.SortBy.title);

Databases | 109

for(int rowNum=0; rowNum<cursor.getCount(); rowNum++){
 cursor.moveToPosition(rowNum);
 doSomethingWith(cursor.getColTitle());
}

Here are some of the highlights of the code:

Creates a MicroJobsDatabase object. The argument, this, represents the context, as
discussed previously.

Creates the JobsCursor cursor, referring to the SortBy enumeration discussed earlier.

Uses generic Cursor methods to iterate through the cursor.

Still within the loop, invokes one of the custom accessor methods provided by
JobsCursor to “do something” chosen by the user with the value of each row’s title
column.

Modifying the Database
Android Cursors are great when you want to read data from the database, but the
Cursors API does not provide methods for creating, updating, or deleting data. The
SQLiteDatabase class provides two basic interfaces that you can use for both reading
and writing:

• A set of four methods called simply insert, query, update, and delete

• A more general execSQL method that takes any SQL statement and runs it against
the database

We recommend using the first method when your operations fit its capabilities. We’ll
show you both ways using the MJAndroid operations.

Inserting data into the database

The SQL INSERT statement is used whenever you want to insert data into an SQL
database. The INSERT statement maps to the “create” operation of the CRUD
methodology.

In the MJAndroid application, the user can add jobs to the list by clicking on the Add
Job menu item when looking at the Jobs list. The user can then fill out a form to input
the employer, job title, and description. After the user clicks on the Add Job button on
the form, the following line of code is executed:

db.addJob(employer.id, txtTitle.getText().toString(),
 txtDescription.getText().toString());

This code calls the addJob function, passing in the employer ID, the job title, and the
job description. The addJob function does the actual work of writing the job out to the
database.

Example 8-1 shows you how to use the insert method.

110 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

Example 8-1. Using the insert method

/**
 * Add a new job to the database. The job will have a status of open.
 * @param employer_id The employer offering the job
 * @param title The job title
 * @param description The job description
 */
public void addJob(long employer_id, String title, String description){
 ContentValues map = new ContentValues();
 map.put("employer_id", employer_id);
 map.put("title", title);
 map.put("description", description);
 try{
 getWritableDatabase().insert("jobs", null, map);
 } catch (SQLException e) {
 Log.e("Error writing new job", e.toString());
 }
}

Here are some of the highlights of the code in Example 8-1:

The ContentValues object is a map of column names to column values. Internally,
it’s implemented as a HashMap<String,Object>. However, unlike a simple HashMap,
ContentValues is strongly typed. You can specify the data type of each value stored
in a ContentValues container. When trying to pull values back out, ContentValues
will automatically convert values to the requested type if possible.

The second parameter to the insert method is nullColumnHack. It’s used only when
the third parameter, the map, is null and therefore the row would otherwise be
completely empty.

Example 8-2 shows you how to use the execSQL method.

Example 8-2. Using the execSQL method

/**
 * Add a new job to the database. The job will have a status of open.
 * @param employer_id The employer offering the job
 * @param title The job title
 * @param description The job description
 */
public void addJob(long employer_id, String title, String description){
 String sql =
 "INSERT INTO jobs (_id, employer_id, title, description, start_time, end_time,
 status) " +
 "VALUES (NULL, ?, ?, ?, 0, 0, 3)";
 Object[] bindArgs = new Object[]{employer_id, title, description};
 try{
 getWritableDatabase().execSQL(sql, bindArgs);
 } catch (SQLException e) {
 Log.e("Error writing new job", e.toString());
 }
}

Databases | 111

Here are some of the highlights of the code in Example 8-2:

First, we build a SQL string template named sql that contains bindable parameters
that will be filled in with user data. The bindable parameters are marked by a ques-
tion mark in the string. Next, we build an object array named bindArgs that contains
one object per element in our SQL template. There are three question marks in the
template, and therefore there must be three elements in the object array.

Executes the SQL command by passing the SQL template string and the bind argu-
ments to execSQL. Using a SQL template and bind arguments is much preferred over
building up the SQL statement, complete with parameters, into a String or
StringBuilder. By using a template with parameters, you protect your application
from SQL injection attacks. These attacks occur when a malicious user enters in-
formation into a form that is deliberately meant to modify the database in a way that
was not intended by the developer. This is normally done by ending the current SQL
command prematurely, using SQL syntax characters, and then adding new SQL
commands directly in the form field. The template-plus-parameters approach also
protects you from more run-of-the-mill errors, such as invalid characters in the
parameters.

Updating data already in the database

The MicroJobs application enables the user to edit a job by clicking on the job in the
Jobs list and choosing the Edit Job menu item. The user can then modify the strings
for employer, job title, and description in the editJob form. After the user clicks on the
Update button on the form, the following line of code is executed:

db.editJob((long)job_id, employer.id, txtTitle.getText().toString(),
 txtDescription.getText().toString());

This code calls the editJob method, passing the job ID and the three items the user can
change: employer ID, job title, and job description. The editJob method does the actual
work of modifying the job in the database.

Example 8-3 shows you how to use the update method.

Example 8-3. Using the update method

/**
 * Update a job in the database.
 * @param job_id The job id of the existing job
 * @param employer_id The employer offering the job
 * @param title The job title
 * @param description The job description
 */
public void editJob(long job_id, long employer_id, String title, String description) {
 ContentValues map = new ContentValues();
 map.put("employer_id", employer_id);
 map.put("title", title);
 map.put("description", description);
 String[] whereArgs = new String[]{Long.toString(job_id)};

112 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

 try{
 getWritableDatabase().update("jobs", map, "_id=?", whereArgs);
 } catch (SQLException e) {
 Log.e("Error writing new job", e.toString());
 }
}

Here are some of the highlights of the code in Example 8-3:

The first parameter to update is the name of the table to manipulate. The second is
the map of column names to new values. The third is a small snippet of SQL; in this
case, it’s a SQL template with one parameter. The parameter is marked with a ques-
tion mark, and is filled out with the contents of the fourth argument.

Example 8-4 shows you how to use the execSQL method.

Example 8-4. Using the execSQL method

/**
 * Update a job in the database.
 * @param job_id The job id of the existing job
 * @param employer_id The employer offering the job
 * @param title The job title
 * @param description The job description
 */
public void editJob(long job_id, long employer_id, String title, String description) {
 String sql =
 "UPDATE jobs " +
 "SET employer_id = ?, "+
 " title = ?, "+
 " description = ? "+
 "WHERE _id = ? ";
 Object[] bindArgs = new Object[]{employer_id, title, description, job_id};
 try{
 getWritableDatabase().execSQL(sql, bindArgs);
 } catch (SQLException e) {
 Log.e("Error writing new job", e.toString());
 }
}

For the application in Example 8-4, we show the simplest possible function. This makes
it easy to understand in a book, but is not enough for a real application. In a real
application, you would want to check input strings for invalid characters, verify that
the job exists before trying to update it, verify that the employer_id value is valid before
using it, do a better job of catching errors, etc. You would also probably authenticate
the user for any application that is shared by multiple people.

Deleting data in the database

The MicroJobs application enables the user to delete a job as well as create and change
it. From the main application interface, the user clicks on the List Jobs button to get a
list of jobs, and then clicks on a particular job to see the job detail. At this level, the

Databases | 113

user can click on the “Delete this job” menu item to delete the job. The application
asks the user if he really wants to delete the job. When the user hits the “Delete” button
in response, the following line of code in the MicroJobsDetail.java file is executed:

db.deleteJob(job_id);

This code calls the deleteJob method of the MicroJobsDatabase class, passing it the job
ID to delete. The code is similar to the functions we’ve already seen and lacks the same
real-world features.

Example 8-5 shows you how to use the delete method.

Example 8-5. Using the delete method

/**
 * Delete a job from the database.
 * @param job_id The job id of the job to delete
 */
public void deleteJob(long job_id) {
 String[] whereArgs = new String[]{Long.toString(job_id)};
 try{
 getWritableDatabase().delete("jobs", "_id=?", whereArgs);
 } catch (SQLException e) {
 Log.e("Error deleteing job", e.toString());
 }
}

Example 8-6 shows you how to use the execSQL method.

Example 8-6. Using the execSQL method

/**
 * Delete a job from the database.
 * @param job_id The job id of the job to delete
 */
public void deleteJob(long job_id) {
 String sql = String.format(
 "DELETE FROM jobs " +
 "WHERE _id = '%d' ",
 job_id);
 try{
 getWritableDatabase().execSQL(sql);
 } catch (SQLException e) {
 Log.e("Error deleteing job", e.toString());
 }
}

Content Providers
Much of the time, an application’s data is tightly bound to that application. For in-
stance, a book reader application will typically have one datafile per book. Other
applications on the mobile phone will have no interest in the files that the book reader

114 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

uses to store books, so those files are tightly bound to the application, and there is no
need to make any effort to share the book data. In fact, the Android OS enforces this
tight binding so that applications can’t read or write data across packages at all.

However, some applications want to share their data; that is, they want other applica-
tions to be able to read and write data within their database. Perhaps the most obvious
example is contact data. If each application that required contacts forced the user to
maintain a separate database for that specific application, the phone would be all but
useless.

Android enables applications to share data using the content provider API. This API
enables each client application to query the OS for data it’s interested in, using a uni-
form resource identifier (URI) mechanism, similar to the way a browser requests in-
formation from the Internet.

The client does not know which application will provide the data; it simply presents
the OS with a URI and leaves it to the OS to start the appropriate application to provide
the result.

The content provider API enables full CRUD access to the content. This means the
application can:

• Create new records

• Retrieve one, all, or a limited set of records

• Update records

• Delete records if permitted

This section shows how to use the content provider API by examining the inner work-
ings of the NotePad application provided with the Android SDK. Assuming the SDK
was installed in the /sdk directory, all file references within the NotePad project are
relative to /sdk/samples/NotePad; thus, when the AndroidManifest.xml file is referenced
in this section, the /sdk/samples/NotePad/AndroidManifest.xml file is assumed. By
studying NotePad’s implementation, you’ll be able to create and manage content pro-
viders of your own.

Throughout this chapter we make the assumption that the backend of
a content provider is a SQLite database. This will almost always be the
case, and the API uses standard database operations, such as create,
read, update, and delete. However, it is possible to use the API to store
and retrieve data using any backend that will support the required op-
erations. For instance, a flat file that just does inserts and queries that
return some subset of the file is possible. However, in most cases an
SQLite database will be on the backend of a content provider, so we use
those terms and concepts in this chapter.

Content Providers | 115

Introducing NotePad
The Android NotePad application is a very simple notebook. It allows the user to type
textual notes on lined note paper and store them under a textual title of any length. A
user can create notes, view a list of notes, and update and delete notes. As an applica-
tion, NotePad is usable, but just barely; its main purpose is to show programmers how
to build and use content providers.

Activities

The NotePad application has three distinct Activities: NoteList, NoteEditor, and
TitleEditor. Instead of communicating directly to the NotePad database, each of these
Activities use the content provider API, so the NotePad application is both a content
provider client and a server. This makes it perfect for exploring content providers.

The purpose of each activity is reasonably obvious from its name. The NoteList activity
presents the user with a list of notes, and allows her to add a new note or edit the title
or body of an existing note.

The NoteEditor allows a user to create a new note or modify the body of an existing
note. Finally, the TitleEditor is a dialog box that allows a user to modify the title of an
existing note.

Database

The NotePad database is created with the following SQL statement:

CREATE TABLE notes (
 _id INTEGER PRIMARY KEY,
 title TEXT,
 note TEXT,
 created INTEGER,
 modified INTEGER
);

The _id column is not required, but recommended by the Android SDK documenta-
tion. The documentation suggests that the column should be defined with the SQL
attributes INTEGER PRIMARY KEY AUTOINCREMENT. Unless you have an application-specific
identifier that you can guarantee to be unique, you might as well make use of the
AUTOINCREMENT feature to assign arbitrary integers robustly.

The title and note columns store the note title and note body data, respectively. The
main raison d’être for the NotePad application is to manipulate the contents of these
columns.

Finally, the created and modified columns keep track of when the note was created and
when it was last modified. In the NotePad application itself, these columns are never
seen by the user. However, other applications can read them using the content provider
API.

116 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

Structure of the source code

This section briefly examines each relevant file within the NotePad application:

AndroidManifest.xml
Chapter 3 described the purpose of the AndroidManifest.xml file that is
part of every Android application. It describes important attributes of the appli-
cation, such as the Activities and Intents that the application implements. The
AndroidManifest.xml file for the NotePad application reveals the three activities—
NotesList, NoteEditor, and TitleEditor—along with the various Intents that these
activities consume. Finally, the <provider> element shows that the application is a
content provider. We’ll discuss the <provider> element in detail later in this section.

res/drawable/app_notes.png
This file is the icon for the application. The <application> element within the
AndroidManifest.xml file sets the icon using the android:icon attribute.

res/layout/*.xml
These three layout files use XML to describe how each activity screen is laid out.
Chapter 2 covers these concepts.

res/values/strings.xml
All of the user-visible strings in the NotePad application appear in this file. Over
time, as the application gains acceptance in the user community, users from
non-English-speaking countries will want the application adapted to their lan-
guages. This job is much easier if all user-facing strings start out in strings.xml.

src/com/example/android/notepad/NoteEditor.java
The NoteEditor class extends the Activity class and allows the user to edit a note
in the notes database. This class never manipulates the notes database directly, but
instead uses the NotePadProvider content provider.

src/com/example/android/notepad/NotePad.java
The NotePad class contains the AUTHORITY attribute (discussed later) and the Notes
class, which defines the names of the content provider columns. Because the da-
tabase columns are named the same as the content provider columns, the Note class
also is also used to define the names of the database columns. Neither the
NotePad class nor the Notes class contain any executable code. The relevant portion
of the NotePad.java file follows:

public final class NotePad {
 public static final String AUTHORITY = "com.google.provider.NotePad";
 private NotePad() {}// This class cannot be instantiated
 /** Notes table */
 public static final class Notes implements BaseColumns {
 // This class cannot be instantiated
 private Notes() {} // This class cannot be instantiated
 public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/notes");
 public static final String CONTENT_TYPE =
 "vnd.android.cursor.dir/vnd.google.note";

Content Providers | 117

 public static final String CONTENT_ITEM_TYPE=
 "vnd.android.cursor.item/vnd.google.note";
 public static final String TITLE = "title";
 public static final String NOTE = "note";
 public static final String CREATED_DATE = "created";
 public static final String MODIFIED_DATE = "modified";
 }
}

src/com/example/android/notepad/NotePadProvider.java
The NotePadProvider class is the content provider for the notes database. It inter-
cepts URIs for each of the CRUD actions and returns data appropriate to the action
requested. This file is examined in detail later in this chapter.

src/com/example/android/notepad/NotesList.java
The NotesList class is an Activity that allows the user to view a list of notes. The
user can add a new note or edit the title or body of an existing note

src/com/example/android/notepad/TitleEditor.java
The TitleEditor class is an Activity that implements a dialog box that allows a user
to modify the title of an existing note. Since this is a very simple class, it is quite
helpful to examine it closely, to understand how to query and modify data in a
content provider.

Content Providers
Now that we’ve examined the general structure of the NotePad application, it’s time
to look at how the application both implements and consumes the NotePadProvider
content provider.

Implementing a content provider

The Android SDK contains a document that describes nine steps to creating a content
provider. In summary, they are:

1. Extend the ContentProvider class.

2. Define the CONTENT_URI for your content provider.

3. Create the data storage for your content.

4. Create the column names for communication with clients.

5. Define the process by which binary data is returned to the client.

6. Declare public static Strings that clients use to specify columns.

7. Implement the CRUD methods of a Cursor to return to the client.

8. Update the AndroidManifest.xml file to declare your <provider>.

9. Define MIME types for any new data types.

118 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

In the following sections, we’ll examine each step in detail using the NotePad applica-
tion as our guide.

Within NotePadProvider.java, the NotePadProvider class extends
ContentProvider, as shown here:

public class NotePadProvider extends ContentProvider

Classes that extend ContentProvider must provide implementations for the following
methods:

onCreate
This method is called during the content provider’s startup. Any code you want to
run just once, such as making a database connection, should reside in this method.

getType
This method, when given a URI, returns the MIME type of the data that this content
provider provides at that URI. The URI comes from the client application interested
in accessing the data.

insert
This method is called when the client code wishes to insert data into the database
your content provider is serving. Normally, the implementation for this method
will either directly or indirectly result in a database insert operation.

query
This method is called whenever a client wishes to read data from the content
provider’s database. It is normally called through ContentProvider’s
managedQuery method. Normally, here you retrieve data using a SQL SELECT
statement and return a cursor containing the requested data.

update
This method is called when a client wishes to update one or more rows in the
ContentProvider’s database. It translates to a SQL UPDATE statement.

delete
This method is called when a client wishes to delete one or more rows in the
ContentProvider’s database. It translates to a SQL DELETE statement.

As usual, it’s best to understand the major class
and instance variables used by a method before examining how the method works. The
variables we need to understand for the NotePad’s ContentProvider class are:

private static final String DATABASE_NAME = "note_pad.db";
private static final int DATABASE_VERSION = 2;
private static final String NOTES_TABLE_NAME = "notes";
private DatabaseHelper mOpenHelper;

DATABASE_NAME
The name of the database file on the device. For the NotePad project, the full path
to the file is /data/data/com.example.android.notepad/databases/note_pad.db.

Extend ContentProvider.

NotePadProvider class and instance variables.

Content Providers | 119

DATABASE_VERSION
The version of the database this code works with. If this number is higher than the
version of the database itself, the application calls the DatabaseHelper.onUpdate
method. See “Create the data storage” on page 122 for more information.

NOTES_TABLE_NAME
The name of the notes table within the notes database.

mOpenHelper
This instance variable is initialized during onCreate. It provides access to the da-
tabase for the insert, query, update, and delete methods.

In addition to these class and instance variables, the NotePadContentProvider class also
has a static initialization block that performs complex initializations of static variables
that can’t be performed as simple one-liners:

private static HashMap<String, String> sNotesProjectionMap;
private static final UriMatcher sUriMatcher;
private static final int NOTES = 1;
private static final int NOTE_ID = 2;
...
static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(NotePad.AUTHORITY, "notes", NOTES);
 sUriMatcher.addURI(NotePad.AUTHORITY, "notes/#", NOTE_ID);

 sNotesProjectionMap = new HashMap<String, String>();
 sNotesProjectionMap.put(Notes._ID, Notes._ID);
 sNotesProjectionMap.put(Notes.TITLE, Notes.TITLE);
 sNotesProjectionMap.put(Notes.NOTE, Notes.NOTE);
 sNotesProjectionMap.put(Notes.CREATED_DATE, Notes.CREATED_DATE);
 sNotesProjectionMap.put(Notes.MODIFIED_DATE, Notes.MODIFIED_DATE);
}

The meanings of these variables follow:

sNotesProjectionMap
The projection map used by the query method. This HashMap maps the content
provider’s column names to database column names. A projection map is not re-
quired, but when used it must list all column names that might be returned by the
query. In NotePadContentProvider, the content provider column names and the
database column names are identical, so the sNotesProjectionMap is not required.

sUriMatcher
This data structure is loaded with several URI templates that match URIs clients
can send the content provider. Each URI template is paired with an integer that
the sUriMatcher returns when it’s passed a matching URI. The integers are used as
cases of a switch in other parts of the class. NotePadContentProvider has two types
of URIs, represented by the NOTES and NOTES_ID integers.

NOTES
sUriMatcher returns this value for note URIs that do not include a note ID.

120 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

NOTES_ID
sUriMatcher returns this value when the notes URI includes a note ID.

When a client application uses a content resolver to request data, a
URI that identifies the desired data is passed to the content resolver. Android tries to
match the URI with the CONTENT_URI of each content provider it knows about to find
the right provider for the client. Thus, the CONTENT_URI defines the type of URIs your
content provider can process.

A CONTENT_URI consists of these parts:

content://
This initial string tells the Android framework that it must find a content provider
to resolve the URI.

The authority
This string uniquely identifies the content provider and consists of up to two sec-
tions: the organizational section and the provider identifier section. The organiza-
tional section uniquely identifies the organization that created the content pro-
vider. The provider identifier section identifies a particular content provider that
the organization created. For content providers that are built into Android, the
organizational section is omitted. For instance, the built-in “media” authority that
returns one or more images does not have the organizational section of the au-
thority. However any content providers that are created by developers outside of
Google’s Android team must define both sections of the content provider. Thus,
the Notepad example application’s authority is com.google.provider.NotePad. The
organizational section is com.google.provider, and the provider identifier section
is NotePad. The Google documentation suggests that the best solution for picking
the authority section of your CONTENT_URI is to use the fully qualified class name of
the class implementing the content provider.

The authority section uniquely identifies the particular content provider that An-
droid will call to respond to queries that it handles.

The path
The content provider can interpret the rest of the URI however it wants, but it must
adhere to some requirements:

• If the content provider can return multiple data types, the URI must be con-
structed so that some part of the path specifies the type of data to return.

For instance, the built-in “Contacts” content provider provides many different
types of data: People, Phones, ContactMethods, etc. The Contacts content pro-
vider uses strings in the URI to differentiate which type of data the user is re-
questing. Thus, to request a specific person, the URI will be something like this:

content://contacts/people/1

To request a specific phone number, the URI could be something like this:

content://contacts/people/1/phone/3

Define CONTENT_URI.

Content Providers | 121

In the first case, the MIME data type returned will be vnd.android.cursor.item/
person, whereas in the second case, it will be vnd.android.cursor.item/phone.

• The content provider must be capable of returning either one item or a set of
item identifiers. The content provider will return a single item when an item
identifier appears in the final portion of the URI. Looking back at our previous
example, the URI content://contacts/people/1/phone/3 returned a single phone
number of type vnd.android.cursor.item/phone. If the URI had instead been
content://contacts/people/1/phone, the application would have returned a list of
all of the phone numbers for the person having the person identifier number 1,
and the MIME type of the data returned would be vnd.android.cursor.dir/
phone.

As mentioned earlier, the content provider can interpret the path portion of the
URI however it wants. This means that it can use items in the path to filter data to
return to the caller. For instance, the built-in “media” content provider can return
either internal or external data, depending on whether the URI contains the word
“internal” or “external” in the path.

The full CONTENT_URI for NotePad is content://com.google.provider.NotePad/notes.

The CONTENT_URI must be of type public static final Uri. It is defined in the
NotePad class of the NotePad application. First, a string named AUTHORITY is defined:

public final class NotePad {
 public static final String AUTHORITY = "com.google.provider.NotePad";

Then, the CONTENT_URI itself is defined:

public static final class Notes implements BaseColumns {
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY +
 "/notes");

A content provider can store data in any way it chooses. Because
content providers use database semantics, the SQLite database is most commonly used.
The onCreate method of the ContentProvider class (NotePadProvider in the NotePad
application) creates this data store. The method is called during the content provider’s
initialization. In the NotePad application, the onCreate method creates a connection to
the database, creating the database first if it does not exist.

@Override
public boolean onCreate() {
 mOpenHelper = new DatabaseHelper(getContext());
 return true;
}

private static class DatabaseHelper extends SQLiteOpenHelper {

 DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override

Create the data storage.

122 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE " + NOTES_TABLE_NAME + " ("
 + Notes._ID + " INTEGER PRIMARY KEY,"
 + Notes.TITLE + " TEXT,"
 + Notes.NOTE + " TEXT,"
 + Notes.CREATED_DATE + " INTEGER,"
 + Notes.MODIFIED_DATE + " INTEGER"
 + ");");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldver, int newver) {
 // destroy the old version -- not nice to do in a real app!
 db.execSQL("DROP TABLE IF EXISTS notes");
 onCreate(db);
 }
}

Here are some of the highlights of the code:

Creates a new object of the DatabaseHelper class, which is derived from SQLiteOpen
Helper. The constructor for DatabaseHelper knows to call onCreate or onUpgrade if it
has to create or upgrade the database.

This is standard database code for Android, very similar to the database creation code
from the MJAndroid project. A handle for the new DatabaseHelper class is assigned to
the mOpenHelper class variable, which is used by the rest of the content provider to
manipulate the database.

This method embeds raw SQL into a call to execSQL. As we’ll see, further calls don’t
need to use SQL; instead, their simple CRUD operations use calls provided by the
framework.

Data Store for Binary Data
The Android SDK documentation suggests that when your content provider stores
binary data, such as a bitmap or music clip, the data should be stored outside of the
database in a file, and the content provider should store a content:// URI in the data-
base that points to the file. Client applications will query your content provider to
retrieve that content:// URI and then retrieve the actual byte stream from the file it
specifies.

The reason for this circuitous route is easy to understand after some examination. Be-
cause filesystem I/O is much faster and more versatile than dealing with SQLite blobs,
it’s better to use the Unix filesystem instead of SQL blobs. But since an Android ap-
plication cannot read or write files that another application has created, a content pro-
vider must be used to access the blobs. Therefore, when the first content provider
returns a pointer to a file containing a blob, that pointer must be in the form of a
content:// URI instead of a Unix filename. The use of a content:// URI causes the file
to be opened and read under the permissions of the content provider that owns the file,
not the client application (which does not have access rights to the file).

Content Providers | 123

To implement the file approach, instead of creating a hypothetical user table like this:

CREATE TABLE user (
 _id INTEGER PRIMARY KEY AUTOINCREMENT,
 name TEXT,
 password TEXT,
 picture BLOB
);

the documentation suggests two tables that look like this:

CREATE TABLE user (
 _id INTEGER PRIMARY KEY AUTOINCREMENT,
 name TEXT,
 password TEXT,
 picture TEXT
);

CREATE TABLE userPicture (
 _id INTEGER PRIMARY KEY AUTOINCREMENT,
 _data TEXT
);

The picture column of the user table will store a content:// URI that points to a row
in the userPicture table. The _data column of the userPicture table will point to a real
file on the Android filesystem.

If the path to the file were stored directly in the user table, clients would get a path but
be unable to open the file, because it’s owned by the application serving up the content
provider and the clients don’t have permission to read it. In the solution shown here,
however, access is controlled by a ContentResolver class, which we’ll examine later.

The ContentResolver class looks for a column named _data when processing requests.
If the file specified in that column is found, the class’s openOutputStream method opens
the file and returns a java.io.OutputStream to the client. This is the same object
that would be returned if the client were able to open the file directly. The
ContentResolver class is part of the same application as the content provider, and
therefore is able to open the file when the client cannot.

Content providers exchange data with their clients in much the
same way an SQL database exchanges data with database applications: using Cursors
full of rows and columns of data. A content provider must define the column names it
supports, just as a database application must define the columns it supports. When the
content provider uses an SQLite database as its data store, the obvious solution is to
give the content provider columns the same name as the database columns, and that’s
just what NotePadProvider does. Because of this, there is no mapping necessary between
the NotePadProvider columns and the underlying database columns.

Not all applications make all of their data available to content provider clients, and
some more complex applications may want to make derivative views available to con-
tent provider clients. The projection map described in “NotePadProvider class and
instance variables” on page 119 is available to handle these complexities.

Create the column names.

124 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

We already explained the recommended data structure for serving
binary data in the sidebar “Data Store for Binary Data” on page 123. The other piece
of the solution lies in the ContentResolver class, discussed later.

The NotePadProvider columns are defined in the
NotePad.Notes class, as mentioned in “NotePadProvider class and instance varia-
bles” on page 119. Every content provider must define an _id column to hold the record
number of each row. The value of each _id must be unique within the
content provider; it is the number that a client will append to the content
provider’s vnd.android.cursor.item URI when attempting to query for a single record.

When the content provider is backed by an SQLite database, as is the case for
NotePadProvider, the _id should have the type INTEGER PRIMARY KEY AUTOINCREMENT.
This way, the rows will have a unique _id number and _id numbers will not be reused,
even when rows are deleted. This helps support referential integrity by ensuring that
each new row has an _id that has never been used before. If row _ids are reused, there
is a chance that cached URIs could point to the wrong data.

A content provider implementation must override the CRUD meth-
ods of the ContentProvider base class: insert, query, update, and delete. For the Note-
Pad application, these methods are defined in the NotePadProvider class.

Classes that extend ContentProvider must override its insert method.
This method receives values from a client, validates them, and then adds a new row to
the database containing those values. The values are passed to the ContentProvider
class in a ContentValues object:

@Override
public Uri insert(Uri uri, ContentValues initialValues) {
 // Validate the requested uri
 if (sUriMatcher.match(uri) != NOTES) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 ContentValues values;
 if (initialValues != null)
 values = new ContentValues(initialValues);
 else
 values = new ContentValues();

 Long now = Long.valueOf(System.currentTimeMillis());

 // Make sure that the fields are all set
 if (values.containsKey(NotePad.Notes.CREATED_DATE) == false)
 values.put(NotePad.Notes.CREATED_DATE, now);

 if (values.containsKey(NotePad.Notes.MODIFIED_DATE) == false)
 values.put(NotePad.Notes.MODIFIED_DATE, now);

 if (values.containsKey(NotePad.Notes.TITLE) == false) {
 Resources r = Resources.getSystem();
 values.put(NotePad.Notes.TITLE,r.getString(android.R.string.untitled));
 }

Supporting binary data.

Declare column specification strings.

Implement the Cursor.

Create data (insert).

Content Providers | 125

 if (values.containsKey(NotePad.Notes.NOTE) == false) {
 values.put(NotePad.Notes.NOTE, "");
 }

 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 long rowId = db.insert(NOTES_TABLE_NAME, Notes.NOTE, values);
 if (rowId > 0) {
 Uri noteUri=ContentUris.withAppendedId(NotePad.Notes.CONTENT_URI,rowId);
 getContext().getContentResolver().notifyChange(noteUri, null);
 return noteUri;
 }
 throw new SQLException("Failed to insert row into " + uri);
}

NotePadProvider must override the query method and return a
Cursor containing the data requested. It starts by creating an instance of the SQLite
QueryBuilder class, using both static information from the class and dynamic informa-
tion from the URI. It then creates the Cursor directly from the database using the
SQLiteQueryBuilder query. Finally, it returns the Cursor that the database created.

When the URI contains a note identification number, the NOTE_ID case is used. In this
case, text is added to the WHERE clause so that only the note identified by the URI is
included in the Cursor returned to the NotePadProvider client:

@Override
public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder)
{
 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 switch (sUriMatcher.match(uri)) {
 case NOTES:
 qb.setTables(NOTES_TABLE_NAME);
 qb.setProjectionMap(sNotesProjectionMap);
 break;

 case NOTE_ID:
 qb.setTables(NOTES_TABLE_NAME);
 qb.setProjectionMap(sNotesProjectionMap);
 qb.appendWhere(Notes._ID + "=" + uri.getPathSegments().get(1));
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 // If no sort order is specified use the default
 String orderBy;
 if (TextUtils.isEmpty(sortOrder)) {
 orderBy = NotePad.Notes.DEFAULT_SORT_ORDER;
 } else {
 orderBy = sortOrder;
 }

Read/select data (query).

126 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

 // Get the database and run the query
 SQLiteDatabase db = mOpenHelper.getReadableDatabase();
 Cursor c=qb.query(db,projection,selection,selectionArgs,null,null,orderBy);

 // Tell cursor what uri to watch, so it knows when its source data changes
 c.setNotificationUri(getContext().getContentResolver(), uri);
 return c;
}

NotePadProvider’s update method receives values from a client, validates
them, and modifies relevant rows in the database given those values. It all boils down
to the SQLiteDatabase’s update method. The first value passed to update is the table
name. This constant is defined elsewhere in the class. The second parameter, values,
is a ContentValues object formed by the client of the ContentProvider. The final two
arguments, where and whereArgs, are used to form the WHERE clause of the SQL UP-
DATE command.

The ContentValues object is created by the ContentProvider’s client. It contains a map
of database column names to new column values that is passed through to the
SQLiteDatabase’s update method.

The where string and the whereArgs string array work together to build the WHERE
clause of the SQLite UPDATE command. This WHERE clause limits the scope of the
UPDATE command to the rows that match its criteria. The where string can be built
either to contain all of the information necessary to build the WHERE clause, or to
contain a template that is filled out at runtime by inserting strings from the whereArgs
string. The easiest way to understand this is with a couple of examples.

Let’s suppose that you want to update only those rows where the dogName column is
equal to 'Jackson'. As the content provider’s client, you could create a single where
string consisting of "dogName='Jackson'" and pass it along to the update method. This
works well and is what many applications do. But unless you check your input very
well, this method is subject to an SQL injection attack, as described earlier in the
chapter.

The better approach is to pass a template as the where clause, something like
"dogName=?". The question mark marks the location for the value of dogName, and the
actual value is found in the whereArgs string array. The first question mark is replaced
by the first value in the whereArgs string array. If there were a second question mark, it
would be replaced with the second value, and so forth:

@Override
public int update(Uri uri,ContentValues values,String where,String[] whereArgs) {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case NOTES:
 count = db.update(NOTES_TABLE_NAME, values, where, whereArgs);
 break;

Update data.

Content Providers | 127

 case NOTE_ID:
 String noteId = uri.getPathSegments().get(1);
 count = db.update(NOTES_TABLE_NAME, values, Notes._ID + "=" + noteId
 + (!TextUtils.isEmpty(where)?" AND ("+where+')':""), whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
}

NotePadProvider’s delete method is very similar to the update method, but
instead of updating the rows with new data, it simply deletes them:

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case NOTES:
 count = db.delete(NOTES_TABLE_NAME, where, whereArgs);
 break;

 case NOTE_ID:
 String noteId = uri.getPathSegments().get(1);
 count = db.delete(NOTES_TABLE_NAME, Notes._ID + "=" + noteId
 + (!TextUtils.isEmpty(where)?" AND ("+where+')':""), whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
}

The AndroidManifest.xml file defines all external access to
the application, including any content providers. Within the file, the <provider> tag
declares the content provider.

The AndroidManifest.xml file within the NotePad project has the following
<provider> tag:

<provider android:name="NotePadProvider"
 android:authorities="com.google.provider.NotePad"
/>

An android:authorities attribute must be defined within the <provider> tag. Android
uses this attribute to identify the URIs that this content provider will fulfill.

Delete data.

Updating AndroidManifest.xml.

128 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

The android:name tag is also required, and identifies the name of the content provider
class. Note that this string matches the AUTHORITY string in the NotePad class, discussed
earlier.

In sum, this section of the AndroidManifest.xml file can be translated to the following
English statement: “This content provider accepts URIs that start with content://
com.google.provider.notepad/ and passes them to the NotePadProvider class.”

Your content provider must override the getType method. This
method accepts a URI and returns the MIME type that corresponds to that URI. For
the NotePadProvider, two types of URIs are accepted, so two types of URIs are returned:

• The content://com.google.provider.NotePad/notes URI will return a directory of zero
or more notes, using the vnd.android.cursor.dir/vnd.google.note MIME type.

• A URI with an appended ID, of the form content://com.google.provider.NotePad/
notes/N, will return a single note, using the vnd.android.cursor.item/
vnd.google.note MIME type.

The client passes a URI to the Android framework to indicate the database it wants to
access, and the Android framework calls your getType method internally to get the
MIME type of the data. That helps Android decide what to do with the data returned
by the content provider.

Your getType method must return the MIME type of the data at the given URI. In
NotePad, the MIME types are stored as simple string variables, shown earlier
in “Structure of the source code” on page 117. The return value starts with
vnd.android.cursor.item for a single record and vnd.android.cursor.dir for multiple
items:

@Override
public String getType(Uri uri) {
 switch (sUriMatcher.match(uri)) {
 case NOTES:
 return Notes.CONTENT_TYPE; // vnd.android.cursor.dir/vnd.google.note

 case NOTE_ID:
 return Notes.CONTENT_ITEM_TYPE; // vnd.android.cursor.item/vnd.google.note

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
}

Consuming a Content Provider
The NotePad application both implements and consumes the NotePadProvider content
provider. The previous sections described how the NotePadProvider allows any appli-
cation on the Android device to access the notes database. This section explains how
the various Activities use the NotePadProvider to manipulate the database. Since these

Define MIME types.

Content Providers | 129

activities are part of the same application as the NotePadProvider, they could simply
manipulate the database directly, but instead they use the ContentProvider. This does
not impose any performance penalty, so not only does it work well as an example for
our purposes, but it is also good programming practice for all applications implement-
ing a content provider.

The following sections follow the CRUD functions in order. First, data is created using
the SQL INSERT statement. That data is then typically read using an SQL SELECT
query. Sometimes the data must be updated using the SQL UPDATE statement or
deleted using the SQL DELETE statement.

Create data (insert)

The following code is from the NoteEditor class in the NotePad application. Code that
was not relevant to the discussion was removed in the listing:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 final Intent intent = getIntent();

 // Do some setup based on the action being performed.
 final String action = intent.getAction();
 if (Intent.ACTION_EDIT.equals(action)) {
 ...
 } else if (Intent.ACTION_INSERT.equals(action)) {
 // Requested to insert: set that state, and create a new entry
 // in the container.
 mUri = getContentResolver().insert(intent.getData(), null);

 if (mUri == null) {
 // Creating the new note failed
 finish();
 return;
 }
 // Do something with the new note here.
 ...

 }
 ...
}

The NotePad application starts out in the NotesList Activity. NotesList has an “Add
Note” menu entry, shown in Figure 8-1.

When the user presses the Add Note button, the NoteEditor Activity is started with
the ACTION_INSERT Intent. NoteEditor’s onCreate method examines the Intent to deter-
mine why it was started. When the Intent is ACTION_INSERT, a new note is created by
calling the insert method of the content resolver:

mUri = getContentResolver().insert(intent.getData(), null);

130 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

In brief, this line’s job is to create a new blank note and return its URI to the mUri
variable. The value of the mUri variable is the URI of the note being edited.

So how does this sequence of calls work? First, note that NotesList’s parent class is
ListActivity. All Activity classes are descended from ContextWrapper. So, the first
thing the line does is call ContextWrapper.getContentResolver to return a
ContentResolver instance. The insert method of that ContentResolver is then imme-
diately called with two parameters:

URI of the content provider in which to insert the row
Our argument, intent.getData, resolves to the URI of the Intent that got us here
in the first place, content://com.google.provider.NotePad/notes.

Data to insert
Here, by passing null, we’re inserting a record with no data. The data is added
later with a call to the update method when the user types something in.

ContentResolver’s job is to manipulate objects that URIs point to. Almost all of its
methods are verbs that take a URI as their first argument. ContentResolver’s methods
include all of the CRUD methods, stream methods for file I/O, and others.

Figure 8-1. NotesList Activity

Content Providers | 131

Read/query data

To read data, use the managedQuery method. This is an Activity method that calls
query internally. It manages the query for the developer, closing the Cursor and re-
querying it when necessary. The parameters passed to managedQuery are:

uri
The URI to query. This will map to a specific content provider, and in NotePad’s
case, to the NotePad content provider.

projection
A String array with one element for each column you want returned in the query.
Columns are numbered and correspond to the order of the columns in the under-
lying database.

selection
Indicates which rows to retrieve through an SQL WHERE clause; it is passed as a
single String variable. Can be NULL if you want all rows.

selectionArgs
A String array containing one argument for each parameter or placeholder (a
question mark in the SQL SELECT statement). Pass NULL if there are no arguments.

sortOrder
A String variable containing a full ORDER BY argument, if sorting is desired. Can be
NULL.

The NotePad application queries the NotePadProvider to fill in the list of notes to display
to the user:

public class NotesList extends ListActivity {

 ...

 private static final String[] PROJECTION = new String[] {
 Notes._ID, // 0
 Notes.TITLE, // 1
 };

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setDefaultKeyMode(DEFAULT_KEYS_SHORTCUT);

 // If no data was given in the Intent (because we were started
 // as a MAIN activity), then use our default content provider.
 Intent intent = getIntent();
 if (intent.getData() == null) {
 intent.setData(Notes.CONTENT_URI);
 }

132 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

 // Inform the list we provide context menus for items
 getListView().setOnCreateContextMenuListener(this);

 // Perform a managed query. The Activity will handle closing
 // and requerying the cursor when needed.
 Cursor cursor = managedQuery(getIntent().getData(),
 PROJECTION, null, null, Notes.DEFAULT_SORT_ORDER);

 // Used to map notes entries from the database to views
 SimpleCursorAdapter adapter = new SimpleCursorAdapter(
 this,
 R.layout.noteslist_item,
 cursor,
 new String[] { Notes.TITLE },
 new int[] { android.R.id.text1 });
 setListAdapter(adapter);
 }

Here are some of the highlights of the code:

Creates the projection, the first parameter to managedQuery. In this case, the array
contains the note ID and title.

Sets the Activity’s default key handling mode to DEFAULT_KEYS_SHORTCUTS. This lets
the user execute shortcut commands from the options menu without having to press
the menu key first.

Gets the client’s request, passed in the Intent. This should contain the content pro-
vider URI, but if it doesn’t, the next line sets it to the NotePad URI.

The managedQuery call, which returns a cursor.

To use the data in the Cursor as the input for a ListActivity, an Adapter is required.
In this case, a SimpleCursorAdapter has all the functionality that is necessary.

After you have created the Adapter, issue the ListActivity’s setListAdapter method
to display the data from the Cursor on the screen.

Update data

To understand how to update data, we’ll take a look at the TitleEditor class. Because
it’s small, looking at it in its entirety is instructive. Relatively few lines are needed to
manipulate the content provider, and most of the function connects the user’s clicks
to changes in the content provider. The user interaction uses basic manipulations of
graphic elements, which were briefly introduced in Chapter 4 and will be fully discussed
in Chapter 10 and subsequent chapters. The rest of this section prints the
TitleEditor class in blocks, following each block with explanations.

public class TitleEditor extends Activity implements View.OnClickListener {

 /** An array of the columns we are interested in. */
 private static final String[] PROJECTION = new String[] {
 NotePad.Notes._ID, // 0

Content Providers | 133

 NotePad.Notes.TITLE, // 1
 };

 /** Index of the title column */
 private static final int COLUMN_INDEX_TITLE = 1;

 /** Cursor providing access to the note whose title we are editing. */
 private Cursor mCursor;

 /** The EditText field from our UI. Used to extract the text when done. */
 private EditText mText;

 /** The content URI to the note that's being edited. */
 private Uri mUri;

This first section of the TitleEditor Activity class sets up all of its private data. The
following private variables are declared:

PROJECTION
Used by the managedQuery function to describe the columns to return in the query,
as shown in the previous section.

COLUMN_INDEX_TITLE
Defines the number of the column, in the order returned by the query, from which
the title must be pulled. The numbers start at 0, so the value of 1 shown is the index
of the TITLE within the PROJECTION string.

mUri
Holds the URI of the note whose title we’re going to edit. An example URI might
be content://com.google.provider.NotePad/notes/2.

mCursor
The cursor that holds the results of the query.

mText
The EditText field on the form.

Next, the Activity’s onCreate method sets up the Activity:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.title_editor);

 // Get the uri of the note whose title we want to edit
 mUri = getIntent().getData();

 // Get a cursor to access the note
 mCursor = managedQuery(mUri, PROJECTION, null, null, null);

 // Set up click handlers for the text field and button
 mText = (EditText) this.findViewById(R.id.title);
 mText.setOnClickListener(this);

134 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

 Button b = (Button) findViewById(R.id.ok);
 b.setOnClickListener(this);
}

Here are some of the highlights of the code:

Finds the ContentView in the res/layout/title_editor.xml layout file, using the
setContentView method.

Runs the managedQuery method to load results into a Cursor.

Sets click handlers for both the button and the text box. This will direct any clicks
on the button or the text box to the onClick method, which we’ll see shortly.

When onCreate finishes, the onResume method is called. This method pulls the current
value of the note title from the cursor and assigns it to the value of the text box:

@Override
protected void onResume() {
 super.onResume();

 // Initialize the text with the title column from the cursor
 if (mCursor != null) {
 mCursor.moveToFirst();
 mText.setText(mCursor.getString(COLUMN_INDEX_TITLE));
 }
}

The onPause method is where the application writes the data back to the database. In
other words, NotePad follows the typical Android practice of saving up writes until the
application is suspended. We’ll see soon where this method is called:

@Override
protected void onPause() {
 super.onPause();

 if (mCursor != null) {
 // Write the title back to the note
 ContentValues values = new ContentValues();
 values.put(Notes.TITLE, mText.getText().toString());
 getContentResolver().update(mUri, values, null, null);
 }
}

Here are some of the highlights of the code:

Creates a new ContentValues object to hold the set of values to pass to the
ContentResolver.

Puts the column name and the new value of the column in the values object.

Stores the updated value by creating a ContentResolver and passing the URI and new
vales to its update method.

Content Providers | 135

The last method in TitleEditor is the common callback for handling user clicks, named
onClick:

public void onClick(View v) {
 // When the user clicks, just finish this activity.
 // onPause will be called, and we save our data there.
 finish();
}

The comment describes what is going on pretty well. Once the user clicks either the
OK button or the text box within the dialog box, the Activity calls the finish method.
That method calls onPause, which writes the contents of the dialog box back to the
database, as we showed earlier.

Delete data

A user who pulls up a list of notes from the NotesList class can choose the Delete option
on the context menu to run the following method:

@Override
public boolean onContextItemSelected(MenuItem item) {
 AdapterView.AdapterContextMenuInfo info;
 info = (AdapterView.AdapterContextMenuInfo) item.getMenuInfo() ;

 switch (item.getItemId()) {
 case MENU_ITEM_DELETE: {
 // Delete the note that the context menu is for
 Uri noteUri = ContentUris.withAppendedId(getIntent().getData(), info.id);
 getContentResolver().delete(noteUri, null, null);
 return true;
 }
 }
 return false;
}

Here are some of the highlights of the code:

When the menu for the job was created, the job ID was stuffed into the extra infor-
mation variable for the menu. That extra information section is retrieved from the
MenuItem on this line and used in the next part of the highlighted code.

Builds a URI by extracting the URI from the user’s Intent, as usual, and appending
the number of the item to delete, taken from the menu.

Creates a ContentResolver and pass the URI to its delete method.

136 | Chapter 8: Persistent Data Storage: SQLite Databases and Content Providers

CHAPTER 9

Location and Mapping

Ever since mobile phones started incorporating devices that made them aware of their
geographic locations, developers have foreseen a new era of location-based applica-
tions. Location awareness improves many applications and makes possible totally new
applications. If your application is looking up restaurants, it’s clearly better if you can
restrict your search to the area around you. It’s even better if you can see a map of the
restaurants’ locations, and perhaps be able to look up driving or walking directions. If
you’re looking for a temporary job, as in the MJAndroid application highlighted in this
book, it’s clearly an advantage to be able to see where the opportunities are.

And navigation is really just the first generation of Location-Based Services (LBS). De-
velopers foresee the day you’ll be able to opt-in to receive advertisements from nearby
retailers as you walk down a street, and your music player will suggest songs based on
your current location. The world of LBS is just beginning to take off, and as we’ll see,
Google’s Android offers powerful features that make the development of these appli-
cations very easy.

In economic terms, location-based applications are a major factor in mobile telephony,
constituting half the revenue from mobile applications, and growing fast. Because they
are based on the ability of the mobile network to locate devices and the relationship of
mobility and location, location-based applications are as fundamental to mobile tel-
ephony as communication.

Location is usually combined with search: Where are my contacts? Where are services
or products I’m looking for? Where are people with common interests?

Location-Based Services
Mobile phones use several related methods, alone and in combination, to determine
where they are:

Cell ID
Regardless of whether you’re actually talking on the phone, as long as it’s powered
up, your mobile phone carries on a constant conversation with nearby cell towers.

137

It has to do this in order to be able to respond when someone calls you, so every
few seconds it “pings” the cell tower it was using last to tell it that it’s still in range
and to note network parameters such as the current time, the current signal
strength (uplink and downlink), etc.

If you happen to be moving, your phone may do a handover to another cell tower,
all in the background without a need for you to intervene. Each cell tower world-
wide has a unique identifier, called (appropriately enough) its Cell ID, and each
tower knows its latitude and longitude, so it’s easy enough for a mobile phone to
know “approximately” where you are located by taking note of the current Cell
ID’s geographic location. Cell sizes vary depending on the expected traffic in an
area, but in the U.S., their radius ranges from a half mile (cities) to five miles or
more (wide-open spaces).

Triangulation
Most of the time your mobile phone is in range of more than one cell tower. In 2G
and later mobile technologies, the cell tower has the ability to tell what direction
your signal is coming from. If there are two or three towers that can see your phone,
together they can triangulate on your phone’s location. With some operators, your
phone then has the ability to query the network to find out where it’s been located.
This sounds a little backward, but it can be very accurate, and doesn’t depend on
any extra hardware on the mobile phone.

GPS
The satellite-based Global Positioning System (GPS) is ubiquitous these days,
found in car navigation units, handheld navigators, and mobile phones. The good
news is that, using GPS, your mobile phone can determine its location very accu-
rately, including its altitude if that’s important for some particular application.
There are several downsides to GPS, but it is gaining popularity nonetheless. The
downsides:

Increased cost
GPS radios and processors are fairly inexpensive, but still, an increase of even
$10 in the bill-of-materials cost of a mobile phone is considerable.

Reduced battery life
There have been great strides in reducing the power required by GPS radios
and processors, but they still suck battery power. Most phones that include
GPS also have a feature that lets the user turn it on and off. If your application
depends on GPS accuracy, it’s good to remember that your application might
have to check whether the GPS device is turned on and notify the user if it isn’t.

Unreliable availability
Nothing “always works,” but GPS in particular depends on your mobile device
being able to see the satellites currently overhead. If you’re in the basement of
a high-rise building, surrounded by steel-reinforced concrete, you probably
aren’t going to be able to use GPS.

138 | Chapter 9: Location and Mapping

It’s reasonable to expect that all Android phones will include one or all of these location-
finding methods. The T-Mobile G1 in particular can use them all. So now we’ll proceed
to techniques for using the location capabilities.

Mapping
Google is most famous for their search engine, but not far behind that comes the fame
of Google Maps. When creating Android, the folks at Google could easily see the po-
tential in LBS and how well that fit with their mapping expertise. Most LBS applications
end up displaying a map. Meanwhile, Google already had the technology to display
and update interactive maps, and the business processes in place to allow others to use
those maps and add features for their own websites. It still required a leap to make that
mapping technology available to application developers for mobile phones, but thank-
fully Google accomplished just that.

The Google Maps Activity
One of the applications that comes with Android is Google Maps itself. If it’s appro-
priate, you can start Google Maps from your application the same way you start any
other Activity:

1. Create an Intent (new Intent(String action, Uri uri)) that says you need to dis-
play a Map. The parameters are:

• An action, for which you must specify ACTION_VIEW.

• A Uri, for which you should specify one of the following URI Schemes, substi-
tuting your data:

— geo:latitude,longitude

— geo:latitude,longitude?z=zoom

— geo:0,0?qmy_street_address

— geo:0,0?qbusiness_near_city

2. Call startActivity(Intent intent), using the Intent you just created.

An example that creates a map is:

Intent intent = new Intent(ACTION_VIEW, "geo:37.422006,-122.084095");
startActivity(intent);

This is certainly easy, and gets you all the power of Google Maps, but you can’t really
integrate the map into your application this way. Google Maps is an application unto
itself, and there’s no way for you to change anything about the user interface or add
overlay graphics to the map to point out whatever is of interest to your users. Android
provides more flexible packages to add that power.

The Google Maps Activity | 139

The MapView and MapActivity
This book’s MJAndroid application needs to be able to add overlays that show the
locations for jobs in the area. So instead of using the Google Maps application, we will
use a MapView, which we can overlay with as many graphics as we want. You can have
only one MapView per Activity, however, and your activity has to extend MapActivity.
As you’ll see, that’s a small price to pay for all the functionality that comes for free.

There are a couple of unique prerequisites for using MapViews in your application, and
we touched on both of them when we looked at the initialization of MJAndroid in
Chapter 4.

Include the MapViews library
The MapView is not included in the default Android libraries, so you need to
specify in AndroidManifest.xml that we are using this additional library:

<application android:icon="@drawable/icon2">
 <uses-library android:name="com.google.android.maps" />

You can’t put the uses-library line just anywhere in AndroidManifest.xml; it
needs to be within the <application> tag and outside of the <activity> tag
definitions.

Sign your application and obtain a Map apiKey from Google
When you use a MapView in your application, you are using actual Google Maps
data to draw the map. For legal reasons, Google needs to track who is using their
map data. They don’t care what your application does with it, but they need to
have you register with them for an API key and agree to appropriate Terms of
Service. This tells them your application is using mapping data, and whether you
are also using the routing data that is available from Google Maps. Chapter 7 cov-
ered the processes of signing your application and getting an apiKey.

Remember that programs using a MapView must be signed. To make it
easy for you to try out the MJAndroid example from this book, we’ve
included an .apk file as described in the sidebar “Running the MJAn-
droid Code” on page 35 in Chapter 3. If you change the code or do any
coding of your own, you need to get your own key, as described in
Chapter 7.

Working with MapViews
The MapView encapsulates a lot of very complex mapping software and is available
for you in your Android applications—for free. Here are some of the things you can do
with a MapView, with only a little programming on your part:

• Show a street map of any area in the world, with up-to-date mapping information
courtesy of Google

140 | Chapter 9: Location and Mapping

• Change the MapView to show:

Street view
Photographs taken at street level for many areas in North America

Satellite view
An aerial, photographic view of the area

Traffic view
Real-time traffic information superimposed on the map or satellite views

• Move the map under program control

• Plot your own graphics in overlays on top of the map

• Respond to user touch events on the map

MapView and MyLocationOverlay Initialization
The map in MicroJobs has two modes:

• At startup, and when we select “Current Location” from the Spinner, we want to
display a map of our current location, and we want that map to track us as we move
around. For this map we will use the MyLocationOverlay class.

• When we select a specific location from the Spinner, we want to display a map of
that location, turn off location updates, and not track movement.

Let’s look again at the code in MicroJobs.java that initializes the MapView and the
MyLocationOverlay that tracks our current location:

@Override
 public void onCreate(Bundle savedInstanceState) {

...

 mvMap = (MapView) findViewById(R.id.mapmain);

 // get the map controller
 final MapController mc = mvMap.getController();

 mMyLocationOverlay = new MyLocationOverlay(this, mvMap);
 mMyLocationOverlay.runOnFirstFix(
 new Runnable() {
 public void run() {
 mc.animateTo(mMyLocationOverlay.getMyLocation());
 mc.setZoom(16);
 }
 });

 Drawable marker = getResources().getDrawable(R.drawable.android_tiny_image);
 marker.setBounds(0, 0, marker.getIntrinsicWidth(), marker.getIntrinsicHeight());
 mvMap.getOverlays().add(new MJJobsOverlay(marker));

 mvMap.setClickable(true);
 mvMap.setEnabled(true);

Working with MapViews | 141

 mvMap.setSatellite(false);
 mvMap.setTraffic(false);
 mvMap.setStreetView(false);

 // start out with a general zoom
 mc.setZoom(16);
...
 /**
 * Required method to indicate whether we display routes
 */
 @Override
 protected boolean isRouteDisplayed() { return false; }

Here are some of the highlights of the code:

We first find the MapView in the main.xml layout file, the same way we find any
other view, and assign it to the variable mvMap of type MapView, so we can refer to it
when we need to.

We also get a handle on the MapController associated with MapView. We’ll use
that to pan (animate) the map, zoom in, zoom out, change views, etc.

To use MyLocationOverlay, we create a new instantiation, giving it the highly cre-
ative name mMyLocationOverlay.

The first thing we do with mMyLocationOverlay is define a method that Android will
call when we receive our first location fix from the location provider.

This runOnFirstFix method moves the map to the current location (given by
mMyLocationOverlay.getMyLocation()) and zooms to a reasonable level for us to see
nearby job prospects.

Next, we identify a marker that we’ve decided to use on mMyLocationOverlay to mark
available jobs. We use an image that’s stored in our res/drawable directory, called
android_tiny_image. It’s a picture of a little Android robot. We define the bounds
of the Drawable marker, as described in Chapter 12, and add the marker overlay to
the list of overlays for the MapView mvMap.

Now we’d like to set some initial attributes for mvMap, described later in this section.
We’ll allow the user to change most of these through menu buttons.

Then, following a belt-and-suspenders philosophy, just in case there isn’t a location
provider to trigger runOnFirstFix, we’ll set the zoom level again here.

Finally, MapView requires us to override the isRouteDisplayed() method to indicate
whether we are displaying route information on our map. We are not, so we return
false.

MyLocationOverlay encapsulates a wealth of location and mapping code. In our single
call to the constructor we:

• Ask Android to figure out what location providers are available in our environment
(GPS, Cell ID, triangulation).

142 | Chapter 9: Location and Mapping

• Connect to the “best” of those location providers.

• Ask the location provider to send us periodic location updates as our handset
moves.

• Link to routines that will automatically move our map as needed to track any
changes in location.

MyLocationOverlay also allows us to place a compass rose on the MapView and have
that updated as well, but we won’t be using that in MJAndroid.

The map attributes set by the code are:

setClickable
We want users to be able to click (tap) on a job to cause MJAndroid to display
more detail about that job, so we set this to true.

setEnabled
This method is actually inherited from android.view.View. Google doesn’t tell us
exactly what this means in the case of a MapView, but presumably it enables the
standard map functions (zooming, panning, etc.).

setSatellite
Setting this flag adds a satellite view from the composite map, whereas clearing the
flag removes the view. To start with, we don’t want the satellite information on
the map.

setTraffic
Similarly, setting or clearing this flag adds or removes current traffic information
from the map, respectively. Again, we don’t want to start with traffic information
on the map.

setStreetView
We don’t want street views right now either, although we’ll let the user enable
them later.

Zooming in Android Maps
Android maps come already equipped with support for zooming in and out. The “i”
key zooms in on the map, and the “o” key zooms out. Maps can also zoom in and out
under program control, through the MapController.

There are several methods defined for zooming, all via the MapController. Android
defines 21 zoom levels for maps. At zoom level 1, the equator of the earth is 256 pixels
long. Every step up in zoom level multiplies that by 2. Google warns that the higher-
resolution maps are not available worldwide. All of the zoom methods clamp the zoom
level to the range 1 through 21 if you ask MapController to go beyond those limits.

The methods that control zoom, along with their parameters, are:

zoomIn
Zooms in one level.

Working with MapViews | 143

zoomOut
Zooms out one level.

setZoom(int zoomlevel)
Zooms to the given level, restricting it to the range 1 to 21.

zoomInFixing(int xpixel, int ypixel), zoomOutFixing(int xpixel, int ypixel)
Zoom in one level, but keep the given point fixed on the screen. Normally when
you zoom in and out, the center of the screen is the only point that stays fixed.
These routines let you pick any point on the map to be the fixed point.

zoomToSpan(int latSpanE6, int longSpanE6)
Attempts to zoom so the given span is displayed on the map. What it actually does
is select the zoom level that is the closest match for the span requested. The latitude
and longitude span parameters are expressed as integers with a value 106 times the
actual value in degrees. For instance, a latitude/longitude span of 2.5 degrees by
1.0 degrees would be expressed as zoomToSpan(2500000, 1000000).

Pausing and Resuming a MapActivity
Mobile applications have unique requirements, due mostly to the constrained resources
available to execute applications. For now let’s focus on MapActivities and talk about
a way we can help save battery power. The good news is that Android makes it pretty
easy.

In a mobile environment, battery life is everything, and if we’re not the application that
is currently being displayed, we want to do everything we can to minimize the power
we consume. You recall from the discussion of the Android lifecycle (Chapter 1) that
when an Activity (such as MicroJobs) starts another Activity (such as MicroJobsList)
the new Activity takes over the screen, and the calling Activity gets pushed onto a stack
of Activities that are waiting to run. At that time, Android calls the onPause() routine
in the calling Activity so it can prepare itself to go into hibernation. At this point in
MicroJobs.java (or just about any MapActivity that uses location updates), we want to
turn off location updates. Doing so will at least save the cycles devoted to doing the
update, and may allow the handset to save even more power by putting the location
provider in a quiescent state.

When the called Activity (in our case, MicroJobsList) exits and the calling Activity is
popped off the stack and takes control of the screen, the framework calls the
onResume method in the calling Activity. In a MapActivity, we want to turn on location
updates again when this method is invoked.

In MicroJobs, the onPause and onResume methods are straightforward:

/**
 * @see com.google.android.maps.MapActivity#onPause()
 */
 @Override
 public void onPause() {

144 | Chapter 9: Location and Mapping

 super.onPause();
 mMyLocationOverlay.disableMyLocation();
 }

 /**
 * @see com.google.android.maps.MapActivity#onResume()
 */
 @Override
 public void onResume() {
 super.onResume();
 mMyLocationOverlay.enableMyLocation();
 }

Note that if we’d had a compass rose as part of our MyLocationOverlay, we would
have to disable and enable it as well. Otherwise, the system would be updating the
direction of the compass rose even when it wasn’t being displayed, thereby wasting
cycles and battery power.

Controlling the Map with Menu Buttons
We want to give the user the ability to turn on satellite, traffic, and street views of the
map. In addition, we’ll throw in a few menu buttons to enable zooming and another
way of getting to the Jobs List.

Android has a sophisticated set of menu capabilities that includes three types of menus
(options, context, and submenus), each with its own capabilities, icon menu buttons,
and other advanced features. We just use text-based menu buttons, and so we need to
do two things:

1. Create the menu of buttons that will be displayed.

2. Catch the menu events and invoke appropriate actions.

The following code creates the menu in MicroJobs.java:

/**
 * Set up menus for this page
 *
 * @see android.app.Activity#onCreateOptionsMenu(android.view.Menu)
 */
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 boolean supRetVal = super.onCreateOptionsMenu(menu);
 menu.add(Menu.NONE, 0, Menu.NONE, getString(R.string.map_menu_zoom_in));
 menu.add(Menu.NONE, 1, Menu.NONE, getString(R.string.map_menu_zoom_out));
 menu.add(Menu.NONE, 2, Menu.NONE, getString(R.string.map_menu_set_satellite));
 menu.add(Menu.NONE, 3, Menu.NONE, getString(R.string.map_menu_set_map));
 menu.add(Menu.NONE, 4, Menu.NONE, getString(R.string.map_menu_set_traffic));
 menu.add(Menu.NONE, 5, Menu.NONE, getString(R.string.map_menu_show_list));
 return supRetVal;
}

Working with MapViews | 145

We create menu buttons by overriding the onCreateOptionsMenu method, where we are
passed a menu parameter for the Activity’s menu. After dutifully allowing the superclass
a chance to do what it needs to do, we simply add items (buttons) to the menu using
menu.add. The version of menu.add that we’ve chosen takes four parameters:

int groupid
Android allows you to group menu items so you can quickly change the whole
menu at once. We don’t have a need for that in MicroJobs, so Menu.NONE says we
don’t need it.

int itemid
We need a unique identifier for this menu item so we can tell later whether it was
picked.

int order
The itemid we defined in the second parameter does not imply order. If we cared
about the order in which the items were presented, we’d do that with this param-
eter. Since we don’t care, we use Menu.NONE again.

int titleRes
The ID of the string resource we want to use for the button title. Note that this is
an integer, not a string, so the menu strings need to be predefined in string.xml,
under the res directory. You recall that Android takes care of compiling the strings
in res/strings.xml into a .java file (R.java) that assigns an integer to each string. The
getString method retrieves that integer for you (despite the name, the method
returns an integer, not a string).

To catch the menu events, we override the onOptionsItemSelected method:

/**
 * @see android.app.Activity#onOptionsItemSelected(android.view.MenuItem)
 */
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case 0:
 // Zoom in
 zoomIn();
 return true;
 case 1:
 // Zoom out
 zoomOut();
 return true;
 case 2:
 // Toggle satellite views
 mvMap.setSatellite(!mvMap.isSatellite());
 return true;
 case 3:
 // Toggle street views
 mvMap.setStreetView(!mvMap.isStreetView());
 return true;
 case 4:

146 | Chapter 9: Location and Mapping

 // Toggle traffic views
 mvMap.setTraffic(!mvMap.isTraffic());
 return true;
 case 5:
 // Show the job list activity
 startActivity(new Intent(MicroJobs.this, MicroJobsList.class));
 return true;
 }
 return false;
 }

We are passed the selected MenuItem, and the switch has a case for each button that we
defined for the menu. The code for each case is similar to code that we’ve seen before.

Controlling the Map with the KeyPad
Some users might prefer to control the map through the keypad (generally one “click,”
versus two “clicks” to cause a Menu event). Enabling this behavior also demonstrates
how to respond to KeyPad events in general, so we’ve added some code to zoom in,
zoom out, and back out of the current Activity:

/**
 * @see android.app.Activity#onKeyDown(int, android.view.KeyEvent)
 */
@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 switch (keyCode) {
 case KeyEvent.KEYCODE_DPAD_UP: // zoom in
 zoomIn();
 return true;
 case KeyEvent.KEYCODE_DPAD_DOWN: // zoom out
 zoomOut();
 return true;
 case KeyEvent.KEYCODE_BACK: // go back (meaning exit the app)
 finish();
 return true;
 default:
 return false;
 }
}

To catch key down events, we simply override onKeyDown and provide a switch for
the different keys that are of interest. In addition to the keycodes you would expect
(KEYCODE_A, ...KEYCODE_Z and things like KEYCODE_SPACE, KEYCODE_SHIFT_LEFT, and
KEYCODE_SHIFT_RIGHT), Android includes keycodes that may or may not appear
on any particular device (e.g., KEYCODE_CAMERA and KEYCODE_VOLUME_UP). A complete set
of keycodes can be found at http://code.google.com/android/reference/android/view/Key
Event.html.

Working with MapViews | 147

http://code.google.com/android/reference/android/view/KeyEvent.html
http://code.google.com/android/reference/android/view/KeyEvent.html

Location Without Maps
What if your Activity needs to access location information, but it doesn’t include a
MapView? When you use a MapView, Android makes everything very easy with
MyLocationOverlay, but even if you don’t need a map, it isn’t difficult to get location
information. The code in this section is not part of MJAndroid, but it shows how you
would go about getting location information without a map.

Let’s look at a very simple, one-Activity application that displays the current location
in a TextView.

The Manifest and Layout Files
An appropriate AndroidManifest.xml file follows. We created this file using the Android
SDK and the Android Manifest Editor that comes as part of the SDK. The only change
we needed to make with the editor was to add the uses-permission tag for
android.permission.ACCESS_FINE_LOCATION (in the next-to-last line of the file). We al-
ways need this permission in order to get location information from a GPS location
provider:

<?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.microjobsinc.dloc"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION">
 </uses-permission>
 </manifest>

We’ll use a very simple layout file with four TextViews: one label and one text box each
for latitude and longitude:

<?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/lblLatitude"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

148 | Chapter 9: Location and Mapping

 android:text="Latitude:"
 />
 <TextView
 android:id="@+id/tvLatitude"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <TextView
 android:id="@+id/lblLongitude"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Longitude:"
 />
 <TextView
 android:id="@+id/tvLongitude"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>

Connecting to a Location Provider and Getting Location Updates
Let’s start with an Activity that just connects with the GPS LocationProvider and gets
and displays our current location (no updates). The procedure is pretty straightforward:

package com.microjobsinc.dloc;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;
import android.widget.TextView;

public class Main extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // find the TextViews
 TextView tvLatitude = (TextView)findViewById(R.id.tvLatitude);
 TextView tvLongitude = (TextView)findViewById(R.id.tvLongitude);

 // get handle for LocationManager
 LocationManager lm = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 // connect to the GPS location service
 Location loc = lm.getLastKnownLocation("gps");

 // fill in the TextViews
 tvLatitude.setText(Double.toString(loc.getLatitude()));
 tvLongitude.setText(Double.toString(loc.getLongitude()));

Location Without Maps | 149

 }
}

Here are some of the highlights of the code:

Connect to the LocationManager using getSystemService(Context.LOCATION_SERV
ICE).

Ask the LocationManager where we are using getLastKnownLocation("provider").

Get the latitude and longitude from the location returned and use it as needed.

But we also want to get periodic location updates from the LocationManager so we can
track our location as we move about. For that we need to add a listener routine and
ask the LocationManager to call it when it has an update.

Location updates from the LocationManager are accessible to an application through a
DispLocListener class, so we will create an instance of this class in the onCreate method
of our main Activity. We are required to override a number of methods in
DispLocListener to meet the LocationListener interface definition, but we don’t need
them for this application, so we’ll leave the definitions empty.

The full implementation follows:

package com.microjobsinc.dloc;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.widget.TextView;

public class Main extends Activity {
 private LocationManager lm;
 private LocationListener locListenD;
 public TextView tvLatitude;
 public TextView tvLongitude;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // find the TextViews
 tvLatitude = (TextView)findViewById(R.id.tvLatitude);
 tvLongitude = (TextView)findViewById(R.id.tvLongitude);

 // get handle for LocationManager
 LocationManager lm = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 // connect to the GPS location service

150 | Chapter 9: Location and Mapping

 Location loc = lm.getLastKnownLocation("gps");

 // fill in the TextViews
 tvLatitude.setText(Double.toString(loc.getLatitude()));
 tvLongitude.setText(Double.toString(loc.getLongitude()));

 // ask the Location Manager to send us location updates
 locListenD = new DispLocListener();
 lm.requestLocationUpdates("gps", 30000L, 10.0f, locListenD);
 }

 private class DispLocListener implements LocationListener {

 @Override
 public void onLocationChanged(Location location) {
 // update TextViews
 tvLatitude.setText(Double.toString(location.getLatitude()));
 tvLongitude.setText(Double.toString(location.getLongitude()));
 }

 @Override
 public void onProviderDisabled(String provider) {
 }

 @Override
 public void onProviderEnabled(String provider) {
 }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) {
 }
 }
}

Our onCreate method creates an instance of DispLocListener and requests that the
LocationManager update it as needed using requestLocationUpdates. This method takes
four parameters:

String provider
Which location provider to use. We assume GPS is available in this case.

long minTime
Minimum update time, in milliseconds. The LocationManager will wait at least this
long between updates. Here’s an opportunity to tune your application for battery
life: more frequent updates means more battery usage.

float minDistance
Minimum distance, in meters, required to trigger an update. The Location
Manager will update us only if we’ve moved at least this far since the last update.

LocationListener listener
The name of the listener method to call when there is an update. This is the
DispLocListener instance we just created.

Location Without Maps | 151

Finally, we want to add the onPause and onResume code to turn off location updates
when we’re not actually displaying on the user’s screen, and then turn them back on
when we are:

/**
 * Turn off location updates if we're paused
 */
@Override
public void onPause() {
 super.onPause();
 lm.removeUpdates(locListenD);
}

/**
 * Resume location updates when we're resumed
 */
@Override
public void onResume() {
 super.onResume();
 lm.requestLocationUpdates("gps", 30000L, 10.0f, locListenD);
}

Updating the Emulated Location
While you are developing and debugging an application like the one just shown, you’re
normally running on the emulator. It would be nice (maybe even essential) to be able
to update the current location that the emulator uses as it’s running your code. Such a
Mock Location Provider can get very fancy, but Android provides some built-in ways
of updating the emulated location:

• The geo program built into the Android shell

• One-time updates via DDMS

• Tracks that are sequentially updated via DDMS

We’ll look at each of these.

Using geo to update location

The geo utility is built into the Android image that runs on the emulator. It has a number
of capabilities, the most important of which is geo fix:

geo fix
You can use the geo fix command to send a location to Android by telnetting to
the console of the emulated Android. The LocationProvider will then use this as
the current location:

telnet localhost 5554
Android Console: type 'help' for a list of commands
OK
geo fix -122.842232 38.411908 0
OK

152 | Chapter 9: Location and Mapping

geo fix takes three parameters:

longitude
Specified in decimal

latitude
Also specified in decimal

altitude
Specified in meters

Using DDMS to update location

We talked a lot about DDMS (the Dalvik Debug Monitor Service) in Chapter 5, but
two features are related to location updates. The Emulator Control pane of the DDMS
screen provides several ways of controlling the running emulator. After switching to
the DDMS perspective (click on DDMS in the upper right of the Eclipse window), you
should see the Emulator Control pane in the middle left of the DDMS window (Fig-
ure 9-1). You will probably have to scroll down in that pane to see the controls related
to Location Controls.

Figure 9-1. DDMS Emulator Control pane

To send a one-time update of a location to the emulator, just enter the longitude and
latitude in the appropriate boxes and click Send.

If you click on the GPX or KML tabs, you will be able to load a GPX or KML file that
describes a path, as shown in Figure 9-2. Here we’ve already loaded the file OR.kml,
which is included on the website for this book. It traces a path near O’Reilly head-
quarters in Sebastopol, California.

You can create GPX tracks with many GPS navigation software tools, and KML tracks
with Google Earth or many other navigation programs. The OR.kml file was generated

Location Without Maps | 153

by plotting a series of Google Earth Placemarks and concatenating them together into
a single file. Here’s an excerpt from OR.kml:

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
 <name>OR1.kml</name>
 <StyleMap id="msn_ylw-pushpin">
 <Pair>
 <key>normal</key>
 <styleUrl>#sn_ylw-pushpin</styleUrl>
 </Pair>
 <Pair>
 <key>highlight</key>
 <styleUrl>#sh_ylw-pushpin</styleUrl>
 </Pair>
 </StyleMap>
 <Style id="sh_ylw-pushpin">
 <IconStyle>
 <scale>1.3</scale>
 <Icon>
 <href>http://maps.google.com/mapfiles/kml/pushpin/ylw-pushpin.png</href>
 </Icon>
 <hotSpot x="20" y="2" xunits="pixels" yunits="pixels"/>
 </IconStyle>
 <ListStyle>
 </ListStyle>
 </Style>
 <Style id="sn_ylw-pushpin">
 <IconStyle>
 <scale>1.1</scale>
 <Icon>
 <href>http://maps.google.com/mapfiles/kml/pushpin/ylw-pushpin.png</href>
 </Icon>
 <hotSpot x="20" y="2" xunits="pixels" yunits="pixels"/>
 </IconStyle>

Figure 9-2. DDMS Emulator with KML location updates

154 | Chapter 9: Location and Mapping

 <ListStyle>
 </ListStyle>
 </Style>
 <Placemark>
 <name>OR1</name>
 <LookAt>
 <longitude>-122.7583711698369</longitude>
 <latitude>38.38922415809942</latitude>
 <altitude>0</altitude>
 <range>14591.7166300043</range>
 <tilt>0</tilt>
 <heading>0.04087372005871314</heading>
 <altitudeMode>relativeToGround</altitudeMode>
 </LookAt>
 <styleUrl>#msn_ylw-pushpin</styleUrl>
 <Point>
 <coordinates>-122.8239277647483,38.40273084940345,0</coordinates>
 </Point>
 </Placemark>
 <Placemark>
 <name>OR2</name>
 <LookAt>
 <longitude>-122.7677364592949</longitude>
 <latitude>38.3819544049429</latitude>
 <altitude>0</altitude>
 <range>11881.3330990845</range>
 <tilt>0</tilt>
 <heading>-8.006283077460853e-010</heading>
 <altitudeMode>relativeToGround</altitudeMode>
 </LookAt>
 <styleUrl>#msn_ylw-pushpin</styleUrl>
 <Point>
 <coordinates>-122.8064486052584,38.40786910573772,0</coordinates>
 </Point>
 </Placemark>
 <Placemark>
 <name>OR3</name>
 <LookAt>
 <longitude>-122.7677364592949</longitude>
 <latitude>38.3819544049429</latitude>
 <altitude>0</altitude>
 <range>11881.3330990845</range>
 <tilt>0</tilt>
 <heading>-8.006283077460853e-010</heading>
 <altitudeMode>relativeToGround</altitudeMode>
 </LookAt>
 <styleUrl>#msn_ylw-pushpin</styleUrl>
 <Point>
 <coordinates>-122.7911077944045,38.41500788727795,0</coordinates>
 </Point>
 </Placemark>
 ...

Location Without Maps | 155

CHAPTER 10

Building a View

Android comes with many requirements that herald complexity in the user interface:
it’s a multiprocessing system that supports multiple concurrent applications, accepts
multiple forms of input, is highly interactive, and must be flexible enough to support
a wide range of devices now and in the future. The user interface is impressively rich
and easy to use, given all that it has to do. But you need to understand how it works in
order to use it without crashing your application, making it look awful on some devices,
or imposing a performance penalty on the system.

This chapter gives you basic techniques for writing a graphical interface on Android.
It explains the architecture of the Android UI toolkit, while showing you in practical
terms how to enable and lay out basic interface elements such as buttons and text boxes.
It also covers event handling and other critical topics, such as using multiple threads
to offload long tasks so that the UI doesn’t freeze.

Android GUI Architecture
The Android environment adds yet another Graphical User Interface (GUI) toolkit to
the Java ecosphere, joining AWT, Swing, SWT, and J2ME (leaving aside the web UI
toolkits). If you’ve worked with any of these, the Android framework will look familiar.
Like them, it is single-threaded, event-driven, and built on a library of nestable
components.

The Android UI framework is, like the other UI frameworks, organized around the
common Model-View-Controller pattern illustrated in Figure 10-1. It provides struc-
ture and tools for building a Controller that handles user input (like key presses and
screen taps) and a View that renders graphical information to the screen.

The Model
The Model is the guts of your application: what it actually does. It might be, for in-
stance, the database of tunes on your device and the code for playing them. It might be
your list of contacts and the code that places phone calls or sends IMs to them.

157

While a particular application’s View and Controller will necessarily reflect the Model
they manipulate, a single Model might be used by several different applications. Think,
for instance, of an MP3 player and an application that converts MP3 files into WAV
files. For both applications, the Model includes the MP3 file format and codecs for it.
The former application, however, has the familiar Stop, Start, and Pause controls, and
plays the track. The latter may not produce any sound at all; instead, it will have controls
for setting bitrate, etc. The Model is all about the data. It is the subject of most of the
rest of this book.

The View
The View is the application’s feedback to the user. It is the portion of the application
responsible for rendering the display, sending audio to speakers, generating tactile
feedback, and so on. The graphical portion of the Android UI framework’s View, de-
scribed in detail in Chapter 12, is implemented as a tree of subclasses of the View class.
Graphically, each of these objects represents a rectangular area on the screen that is
completely within the rectangular area represented by its parent in the tree. The root
of this tree is the application window.

As an example, the display in a hypothetical MP3 player might contain a component
that shows the album cover for the currently playing tune. Another component might
display the name of the currently playing song, while a third contains subcomponents
such as the Play, Pause, and Stop buttons.

redraw key press, taps, etc.

updateinvalidate

View Controller

Model

Figure 10-1. Model-View-Controller concept

158 | Chapter 10: Building a View

The UI framework paints the screen by walking the View tree, asking each component
to draw itself in a preorder traversal. In other words, each component draws itself and
then asks each of its children to do the same. When the whole tree has been rendered,
the smaller, nested components that are the leaves of the tree—and that were, therefore,
painted later—appear to be painted on top of the components that are nearer to the
root and that were painted first.

The Android UI framework is actually quite a bit more efficient than this oversimplified
description suggests. It does not paint an area of a parent view if it can be certain that
some child will later paint the same area, because it would be a waste of time to paint
background underneath an opaque object! It would also be a waste of time to repaint
portions of a view that have not changed.

The Controller
The Controller is the portion of an application that responds to external actions: a
keystroke, a screen tap, an incoming call, etc. It is implemented as an event queue. Each
external action is represented as a unique event in the queue. The framework removes
each event from the queue in order and dispatches it.

For example, when a user presses a key on his phone, the Android system generates a
KeyEvent and adds it to an event queue. Eventually, after previously enqueued events
have been processed, the KeyEvent is removed from the queue and passed as the pa-
rameter of a call to the dispatchKeyEvent method of the View that is currently selected.

Once an event is dispatched to the in-focus component, that component may take
appropriate action to change the internal state of the program. In an MP3 player ap-
plication, for instance, when the user taps a Play/Pause button on the screen and the
event is dispatched to that button’s object, the handler method might update the Model
to resume playing some previously selected tune.

This chapter describes the construction of a Controller for an Android application.

Putting It Together
We now have all the concepts necessary to describe the complete UI system. When an
external action occurs (for example, when the user scrolls, drags, or presses a button;
a call comes in; or an MP3 player arrives at the end of its playlist), the Android system
enqueues an event representing the action on the event queue. Eventually the event is
dequeued—first in, first out—and dispatched to an appropriate event handler. The
handler, probably code you write as part of your application, responds to the event by
notifying the Model that there has been a change in state. The Model takes the appro-
priate action.

Android GUI Architecture | 159

Nearly any change in Model state will require a corresponding change in the View. In
response to a key press, for instance, an EditText component must show the newly
typed character at the insertion point. Similarly, in a phone book application, clicking
on a contact will cause that contact to be highlighted and the previously highlighted
contact to have its highlighting removed.

In order to update the display, the Model must notify the UI Framework that some
portion of the display is now stale and has to be redrawn. The redraw request is, ac-
tually, nothing more than another event enqueued in the same framework event queue
that held the Controller event a moment ago. The redraw event is processed, in order,
like any other UI event.

Eventually, the redraw event is removed from the queue and dispatched. The event
handler for a redraw event is the View. The View tree is redrawn, and each View object
is responsible for rendering its current state at the time it is drawn.

To make this concrete, we can trace the cycle through a hypothetical MP3 player
application:

1. When the user taps the screen image of the Play/Pause button, the framework
creates a new MotionEvent containing, among other things, the screen coordinates
of the tap. The framework enqueues the new event at the end of the event queue.

2. As described in “The Controller” on page 159, when the event percolates through
the queue, the framework removes it and passes it down the View tree to the leaf
widget within whose bounding rectangle the tap occurred.

3. Because the button widget represents the Play/Pause button, the application but-
ton handling code tells the core (the Model) that it should resume playing a tune.

4. The application Model code starts playing the selected tune. In addition, it sends
a redraw request to the UI framework.

5. The redraw request is added to the event queue and eventually processed as de-
scribed in “The View” on page 158.

6. The screen gets redrawn with the Play button in its playing state, and everything
is again in sync.

UI component objects such as buttons and text boxes actually implement both View
and Controller methods. This only makes sense. When you add a Button to your ap-
plication’s UI, you want it to appear on the screen as well as do something when the
user pushes it. Even though the two logical elements of the UI—the View and the
Controller—are implemented in the same object, you should take care that they do not
directly interact. Controller methods, for instance, should never directly change the
display. Leave it to the code that actually changes state to request a redraw, and trust
that later calls to rendering methods will allow the component to reflect its new state.
Coding in this way minimizes synchronization problems and helps to keep your pro-
gram robust and bug-free.

160 | Chapter 10: Building a View

There is one more aspect of the Android UI framework that it is important to under-
stand: it is single-threaded. There is a single thread removing events from the event
queue to make Controller callbacks and to render the View. This is significant for sev-
eral reasons.

The simplest consequence of a single-threaded UI is that it is not necessary to use
synchronized blocks to coordinate state between the View and the Controller. This is
a valuable optimization.

Another advantage of a single-threaded UI is the guarantee that each event on the event
queue is processed completely and in the order in which it was enqueued. That may
seem fairly obvious, but its implications make coding the UI much easier. When a UI
component is called to handle an event, it is guaranteed that no additional UI processing
will take place until it returns. That means, for instance, that when a component re-
quests multiple changes in the program state—each of which causes a corresponding
request that the screen be repainted—it is guaranteed that the repaint will not start
until it has completed processing, performed all of its updates, and returned. In short,
UI callbacks are atomic.

There is a third reason to remember that there is only a single thread dequeuing and
dispatching events from the UI event queue: if your code stalls that thread, for any
reason, your UI will freeze! If a component’s response to an event is simple (changing
the state of variables, creating new objects, etc.), it is perfectly correct to do that pro-
cessing on the main event thread. If, on the other hand, the handler must retrieve a
response from some distant network service or run a complex database query, the entire
UI will become unresponsive until the request completes. That definitely does not make
for a great user experience! Long-running tasks must be delegated to another thread,
as described in “Advanced Wiring: Focus and Threading” on page 179.

Assembling a Graphical Interface
The Android UI framework provides both a complete set of drawing tools with which
to build a UI and a rich collection of prebuilt components based on these tools. As we
will see in Chapter 12, the framework graphics tools provide plenty of support for
applications that need to create their own controls or render special views. On the other
hand, many applications may work very well using only canned widgets from the tool-
kit. In fact, as we saw in Chapter 9, the MapActivity and MyLocationOverlay classes
make it possible to create extremely sophisticated applications without doing any cus-
tom drawing at all.

We’ve already used the term “widget” once or twice, without explicitly defining it.
Recall that the screen is a rendered by a tree of components. In the Android UI frame-
work, these components are all subclasses of android.view.View. The components that
are leaves or nearly leaves do most of the actual drawing and are, in the context of an
application UI, commonly called widgets.

Assembling a Graphical Interface | 161

The internal nodes, sometimes called Container Views, are special components that can
have other components as children. In the Android UI framework, Container Views
are subclasses of android.view.ViewGroup, which, of course, is in turn a subclass of
View. Typically, they do very little drawing. Instead, they are responsible for arranging
their child components on the screen and keeping them arranged as the display changes
shape, orientation, and so on. Doing this can be quite complex.

You have already seen a very simple View coded up in “Writing Hello-
World” on page 22. That application created a trivial TextView and displayed it. There
is no way to add anything to that application, because the root View is a TextView, which
cannot be a container for other components. To create more complex displays, it is
necessary to assemble a tree of containers. Example 10-1 shows an application with a
view tree that is three layers deep. A vertical linear layout contains two horizontal linear
layouts. Each of the horizontal layouts, in turn, contains two widgets.

Example 10-1. A complex view tree

package com.oreilly.android.intro;

import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;
import android.view.Gravity;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.EditText;
import android.widget.LinearLayout;

public class AndroidDemo extends Activity {
 private LinearLayout root;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 LinearLayout.LayoutParams containerParams
 = new LinearLayout.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.WRAP_CONTENT,
 0.0F);

 LinearLayout.LayoutParams widgetParams
 = new LinearLayout.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.FILL_PARENT,
 1.0F);

 root = new LinearLayout(this);
 root.setOrientation(LinearLayout.VERTICAL);
 root.setBackgroundColor(Color.LTGRAY);
 root.setLayoutParams(containerParams);

162 | Chapter 10: Building a View

 LinearLayout ll = new LinearLayout(this);
 ll.setOrientation(LinearLayout.HORIZONTAL);
 ll.setBackgroundColor(Color.GRAY);
 ll.setLayoutParams(containerParams);
 root.addView(ll);

 EditText tb = new EditText(this);
 tb.setText(R.string.defaultLeftText);
 tb.setFocusable(false);
 tb.setLayoutParams(widgetParams);
 ll.addView(tb);

 tb = new EditText(this);
 tb.setText(R.string.defaultRightText);
 tb.setFocusable(false);
 tb.setLayoutParams(widgetParams);
 ll.addView(tb);

 ll = new LinearLayout(this);
 ll.setOrientation(LinearLayout.HORIZONTAL);
 ll.setBackgroundColor(Color.DKGRAY);
 ll.setLayoutParams(containerParams);
 root.addView(ll);

 Button b = new Button(this);
 b.setText(R.string.labelRed);
 b.setTextColor(Color.RED);
 b.setLayoutParams(widgetParams);
 ll.addView(b);

 b = new Button(this);
 b.setText(R.string.labelGreen);
 b.setTextColor(Color.GREEN);
 b.setLayoutParams(widgetParams);
 ll.addView(b);

 setContentView(root);
 }
}

Note that the code preserves a reference to the root of the View tree for later use.

This example uses three LinearLayout widgets. A LinearLayout, just as its name implies,
is a View that displays its children in a row or column, as determined by its orientation
property. The child views are displayed in the order in which they are added to the
LinearLayout (regardless of the order in which they were created), in the directions
familiar to Western readers: left to right and top to bottom. The button labeled
“Green”, for instance, is in the lower righthand corner of this layout, because it is the
second thing added to the horizontal LinearLayout View, which was, in turn, the second
thing added to the vertical LinearLayout (the root).

Assembling a Graphical Interface | 163

Figure 10-2 shows what the results might look like to the user. The seven Views in the
tree are structured as shown in Figure 10-3.

Figure 10-2. The View as it appears on the screen

LinearLayout (vertical)

LinearLayout
(horizontal)

Text Text Red
button

Green
button

LinearLayout
(horizontal)

Figure 10-3. Hierarchy of objects in the View

Chapter 8 explained that the Android framework provides a convenient capability for
separating data resources from code. This is particularly useful in building view com-
ponent layouts. The previous example can be replaced with the dramatically simpler
code in Example 10-2 and the XML definition of the layout in Example 10-3.

Example 10-2. Complex View using a layout resource

package com.oreilly.android.intro;

import android.app.Activity;
import android.os.Bundle;

/**
 * Android UI demo program

164 | Chapter 10: Building a View

 */
public class AndroidDemo extends Activity {
 private LinearLayout root;

 @Override public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 root = (LinearLayout) findViewById(R.id.root);
 }
}

Example 10-3. Complex View layout resource

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/root"
 android:orientation="vertical"
 android:background="@drawable/lt_gray"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <LinearLayout
 android:orientation="horizontal"
 android:background="@drawable/gray"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <EditText
 android:id="@+id/text1"
 android:text="@string/defaultLeftText"
 android:focusable="false"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"/>

 <EditText
 android:id="@+id/text2"
 android:text="@string/defaultRightText"
 android:focusable="false"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"/>
 </LinearLayout>

 <LinearLayout
 android:orientation="horizontal"
 android:background="@drawable/dk_gray"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <Button
 android:id="@+id/button1"
 android:text="@string/labelRed"
 android:textColor="@drawable/red"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"/>

Assembling a Graphical Interface | 165

 <Button
 android:id="@+id/button2"
 android:text="@string/labelGreen"
 android:textColor="@drawable/green"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"/>
 </LinearLayout>
</LinearLayout>

This version of the code, like the first one, also preserves a reference to the root of the
View tree. It does this by tagging a widget in the XML layout (the root LinearLayout,
in this case) with an android:id tag, and then using the findViewById method from the
Activity class to recover the reference.

It is a very good idea to get into the habit of using a resource to define your View tree
layout. Doing so allows you to separate the visual layout from the code that brings it
to life. This way, you can tinker with the layout of a screen without recompiling. Fur-
ther, if the history of other UI frameworks is any indication, there will eventually be
tools for Android that allow you to compose screens, creating their XML definitions,
using a visual UI editor.

Wiring Up the Controller
“Assembling a Graphical Interface” on page 161 demonstrated a view with two buttons.
Although the buttons look nice—they even highlight when clicked—they aren’t very
useful. Clicking them doesn’t actually do anything.

The discussion of “The Controller” on page 159 described how the Android framework
translates external actions (screen taps, key presses, etc.) into events that are enqueued
and then passed into the application. Example 10-4 shows how to add an event
handler to one of the buttons in the demo, so that it does something when it is clicked.

Example 10-4. Wiring up a button

@Override public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 final EditText tb1 = (EditText) findViewById(R.id.text1);
 final EditText tb2 = (EditText) findViewById(R.id.text2);

 ((Button) findViewById(R.id.button2)).setOnClickListener(
 new Button.OnClickListener() {
 @Override public void onClick(View arg0) {
 tb1.setText(String.valueOf(rand.nextInt(200)));
 tb2.setText(String.valueOf(rand.nextInt(200)));
 }
 }

166 | Chapter 10: Building a View

);
}

When run, this version of the application still looks a lot like Figure 10-2. Unlike the
earlier example, though, in this version every time a user clicks the button labeled
“Green”, the numbers in the EditText boxes change. This is illustrated in Figure 10-4.

Figure 10-4. Working button

Simply changing numbers isn’t very interesting, but this small example demonstrates
the standard mechanism that an application uses to respond to UI events. It is important
to note that, appearances notwithstanding, this example does not violate the MVC
separation of concerns. In response to the call to setText, in this implementation of an
OnClickListener, the EditText object updates an internal representation of the text it
should display, and then calls its own invalidate method. It does not immediately draw
on the screen. There are very few rules in programming that are absolute, but the ad-
monition to separate the Model, the View, and the Controller comes pretty close.

In the example, the instance of the Button class is wired to its behavior using its
setOnClickListener method. Button is a subclass of View, which defines an interface
named OnClickListener and a method named setOnClickListener, which registers the
listener. The OnClickListener interface defines a single method, onClick. When a
Button receives an event from the framework, in addition to any other processing it
might do, it examines the event to see whether it qualifies as a “click.” (The button in
Example 10-1 would highlight when pressed, even before the listener was added.) If
the event does qualify as a click and if a click listener has been installed, that listener’s
onClick method is invoked.

The click listener is free to implement any custom behavior that’s needed. In the ex-
ample, the custom behavior creates two random numbers between 0 and 200 and puts
one into each of the two text boxes. Instead of subclassing Button and overriding its
event processing methods, all that is necessary to extend its behavior is to register a
click listener that implements the behavior. Certainly a lot easier!

The click handler is especially interesting because at the heart of the Android system—
the framework event queue—there is no such thing as a click event. Instead, View event
processing synthesizes the concept of a “click” from other events. If the device has a

Wiring Up the Controller | 167

touch-sensitive screen, for instance, a single tap is considered a click. If the device has
a center key in its D-pad or an “Enter” key, pressing and releasing either will also register
as a click. View clients need not concern themselves with what a click is or how it is
generated on a particular device. They need only handle the higher-level concept, leav-
ing the details to the framework.

A View can have only one OnClickListener. Calling setOnClickListener a second time
on a given View will remove the old listener and install the new one. On the other hand,
a single listener can listen to more than one View. The code in Example 10-5, for in-
stance, is part of another application that looks exactly like Example 10-2. In this
version, though, pushing either of the buttons will update the text box.

This capability can be very convenient in an application in which several actions pro-
duce the same behavior. Do not be tempted, though, to create a single enormous listener
to handle all your widgets. Your code will be easier to maintain and modify if it contains
multiple smaller listeners, each of which implements a single, clear behavior.

Example 10-5. Listening to multiple buttons

@Override public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 final EditText tb1 = (EditText) findViewById(R.id.text1);
 final EditText tb2 = (EditText) findViewById(R.id.text2);

 Button.OnClickListener listener = new Button.OnClickListener() {
 @Override public void onClick(View arg0) {
 tb1.setText(String.valueOf(rand.nextInt(200)));
 tb2.setText(String.valueOf(rand.nextInt(200)));
 } };

 ((Button) findViewById(R.id.button1)).setOnClickListener(listener);
 ((Button) findViewById(R.id.button2)).setOnClickListener(listener);
}

Listening to the Model
The Android UI framework uses the handler installation pattern pervasively. Although
our earlier examples were all Buttons, many other Android widgets define listeners. The
View class defines several events and listeners that are ubiquitous, and which we will
explore in further detail later in this chapter. Other classes, however, define other spe-
cialized types of events and provide handlers for those events that are meaningful only
for those classes. This is a standard idiom that allows clients to customize the behavior
of a widget without having to subclass it.

This pattern (called the Callback Pattern) is also an excellent way for your program to
handle its own external, asynchronous actions. Whether responding to a change in

168 | Chapter 10: Building a View

state on a remote server or an update from a location-based service, your application
can define its own events and listeners to allow its clients to react.

The examples so far have been elementary and have cut several corners. Although they
demonstrate connecting a View and a Controller, they have not had real Models.
(Example 10-4 actually used a String owned by the implementation of EditText as a
Model.) In order to proceed, we’re going to have to take a brief detour to build a real,
usable Model.

The two classes in Example 10-6 comprise a Model that will support extensions to the
demo application for this chapter. They provide a facility for storing a list of objects,
each of which has X and Y coordinates, a color, and a size. They also provide a way to
register a listener, and an interface that the listener must implement.

Example 10-6. The Dots Model

package com.oreilly.android.intro.model;

/** A dot: the coordinates, color and size. */
public final class Dot {
 private final float x, y;
 private final int color;
 private final int diameter;

 /**
 * @param x horizontal coordinate.
 * @param y vertical coordinate.
 * @param color the color.
 * @param diameter dot diameter.
 */
 public Dot(float x, float y, int color, int diameter) {
 this.x = x;
 this.y = y;
 this.color = color;
 this.diameter = diameter;
 }

 /** @return the horizontal coordinate. */
 public float getX() { return x; }

 /** @return the vertical coordinate. */
 public float getY() { return y; }

 /** @return the color. */
 public int getColor() { return color; }

 /** @return the dot diameter. */
 public int getDiameter() { return diameter; }
}

package com.oreilly.android.intro.model;

Wiring Up the Controller | 169

import java.util.Collections;
import java.util.LinkedList;
import java.util.List;

/** A list of dots. */
public class Dots {
 /** DotChangeListener. */
 public interface DotsChangeListener {
 /** @param dots the dots that changed. */
 void onDotsChange(Dots dots);
 }

 private final LinkedList<Dot> dots = new LinkedList<Dot>();
 private final List<Dot> safeDots = Collections.unmodifiableList(dots);

 private DotsChangeListener dotsChangeListener;

 /** @param l the new change listener. */
 public void setDotsChangeListener(DotsChangeListener l) {
 dotsChangeListener = l;
 }

 /** @return the most recently added dot, or null. */
 public Dot getLastDot() {
 return (dots.size() <= 0) ? null : dots.getLast();
 }

 /** @return the list of dots. */
 public List<Dot> getDots() { return safeDots; }

 /**
 * @param x dot horizontal coordinate.
 * @param y dot vertical coordinate.
 * @param color dot color.
 * @param diameter dot size.
 */
 public void addDot(float x, float y, int color, int diameter) {
 dots.add(new Dot(x, y, color, diameter));
 notifyListener();
 }

 /** Delete all the dots. */
 public void clearDots() {
 dots.clear();
 notifyListener();
 }

 private void notifyListener() {
 if (null != dotsChangeListener) {
 dotsChangeListener.onDotsChange(this);
 }
 }
}

170 | Chapter 10: Building a View

In addition to using this model, the next example also introduces a widget used to view
it, the DotView: it will be discussed later, in Example 12-3. For now we introduce it as
a library widget. Its job is to draw the dots represented in the Model, in the correct
color and at the correct coordinates. The complete source for the application is on the
website for this book.

Example 10-7 shows the new demo application, after adding the new Model and View.

Example 10-7. Dots demo

package com.oreilly.android.intro;

import java.util.Random;

import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
10 import android.widget.EditText;
import android.widget.LinearLayout;

import com.oreilly.android.intro.model.Dot;
import com.oreilly.android.intro.model.Dots;
import com.oreilly.android.intro.view.DotView;

/** Android UI demo program */
public class TouchMe extends Activity {
 public static final int DOT_DIAMETER = 6;

 private final Random rand = new Random();

 final Dots dotModel = new Dots();

 DotView dotView;

 /** Called when the activity is first created. */
 @Override public void onCreate(Bundle state) {
 super.onCreate(state);

 dotView = new DotView(this, dotModel);

 // install the view
 setContentView(R.layout.main);
 ((LinearLayout) findViewById(R.id.root)).addView(dotView, 0);

 // wire up the controller
 ((Button) findViewById(R.id.button1)).setOnClickListener(
 new Button.OnClickListener() {
 @Override public void onClick(View v) {
 makeDot(dots, dotView, Color.RED);
 } });
 ((Button) findViewById(R.id.button2)).setOnClickListener(

Wiring Up the Controller | 171

 new Button.OnClickListener() {
 @Override public void onClick(View v) {
 makeDot(dots, dotView, Color.GREEN);
 } });

 final EditText tb1 = (EditText) findViewById(R.id.text1);
 final EditText tb2 = (EditText) findViewById(R.id.text2);
 dots.setDotsChangeListener(new Dots.DotsChangeListener() {
 @Override public void onDotsChange(Dots d) {
 Dot d = dots.getLastDot();
 tb1.setText((null == d) ? "" : String.valueOf(d.getX()));
 tb2.setText((null == d) ? "" : String.valueOf(d.getY()));
 dotView.invalidate();
 } });
 }

 /**
 * @param dots the dots we're drawing
 * @param view the view in which we're drawing dots
 * @param color the color of the dot
 */
 void makeDot(Dots dots, DotView view, int color) {
 int pad = (DOT_DIAMETER + 2) * 2;
 dots.addDot(
 DOT_DIAMETER + (rand.nextFloat() * (view.getWidth() - pad)),
 DOT_DIAMETER + (rand.nextFloat() * (view.getHeight() - pad)),
 color,
 DOT_DIAMETER);
 }
}

Here are some of the highlights of the code:

These two calls to setOnClickListener add new listeners to the layout obtained from
the XML definition.

Anonymous classes handle click event callbacks to the “Red” and “Green” buttons.
These event handlers differ from those in the previous example only in that here
their behavior has been factored out into the local method makeDot, described in item
5.

Calls to makeDot within onClick (to take place when a button is clicked).

The most substantial change to the example. This is where the Model is wired to
the View, using the Callback pattern, by installing a dotsChangedListener. When the
Model changes, this new listener is called. It installs the X and Y coordinates of the
last dot into the left and right text boxes, respectively, and requests that the Dot
View redraw itself (the invalidate call).

Definition of makeDot. This new method creates a dot, checking to make sure it is
within the DotView’s borders, and adds it to the Model. It also allows the dot’s color
to be specified as a parameter.

172 | Chapter 10: Building a View

Figure 10-5 shows what the application looks like when run.

Figure 10-5. Running the Dots demo

Pushing the button labeled “Red” adds a new red dot to the DotView. Pushing the
“Green” button adds a green one. The text fields contain the coordinates of the last dot
added.

The basic structure of Example 10-2 is still recognizable, with some extensions. For
example, here is the chain of events that results from clicking the “Green” button:

1. When the button is clicked, its clickHandler is called.

2. This causes a call to the anonymous class installed as an OnClickHandler. It, in turn,
calls makeDot with the color argument Color.GREEN. The makeDot method generates
random coordinates and adds a new green Dot to the Model at those coordinates.

3. When the Model is updated, it calls its DotsChangedListener.

4. The listener updates the values in the text views and requests that the DotView be
redrawn.

Listening for Touch Events
Modifying the demo application to handle taps is just a matter of adding a tap handler.
The code in Example 10-8 extends the demo application to place a cyan dot in the
DotView at the point at which the screen is tapped. In the previous example, the code

Wiring Up the Controller | 173

would be added at the beginning of the onCreate function right after the call to its parent
method. Notice that, because the code that displays the X and Y coordinates of the
most recently added dot is wired only to the Model, it continues to work correctly, no
matter how dots are added.

Example 10-8. Touchable Dots

dotView.setOnTouchListener(new View.OnTouchListener() {
 @Override public boolean onTouch(View v, MotionEvent event) {
 if (MotionEvent.ACTION_DOWN != event.getAction()) {
 return false;
 }
 dots.addDot(event.getX(), event.getY(), Color.CYAN, DOT_DIAMETER);
 return true;
 } });

The MotionEvent passed to the handler has several other properties in addition to the
location of the tap that caused it. As the example indicates, it also contains the event
type, one of DOWN, UP, MOVE, or CANCEL. A simple tap actually generates one DOWN and one
UP event. Touching and dragging generates a DOWN event, a series of MOVE events, and a
final UP event.

The facilities provided by the MotionEvent for handling gestures are very interesting.
The event contains the size of the touched area and the amount of pressure applied.
That means that, on devices that support it, an application might be able to distinguish
between a tap with one finger and a tap with two fingers, or between a very light brush
and a firm push.

Efficiency is still important in the mobile world. A UI framework confronts the horns
of a dilemma when tracking and reporting touchscreen events. Reporting too few events
might make it impossible to follow motion with sufficient accuracy to do, for instance,
handwriting recognition. On the other hand, reporting too many touch samples, each
in its own event, could load the system unacceptably. The Android UI framework ad-
dresses this problem by bundling groups of samples together, reducing the load and
still maintaining accuracy. To see all of the samples associated with an event, use the
history facility implemented with the methods getHistoricalX, getHistoricalY, etc.

Example 10-9 shows how to use the history facility. It extends the demo program to
track a user’s gestures when she touches the screen. The framework delivers
sampled X and Y coordinates to the onTouch method of an object installed as the
OnTouchListener for the DotView. The method displays a cyan dot for each sample.

Example 10-9. Tracking motion

private static final class TrackingTouchListener
 implements View.OnTouchListener
{
 private final Dots mDots;

 TrackingTouchListener(Dots dots) { mDots = dots; }

174 | Chapter 10: Building a View

 @Override public boolean onTouch(View v, MotionEvent evt) {
 switch (evt.getAction()) {
 case MotionEvent.ACTION_DOWN:
 break;

 case MotionEvent.ACTION_MOVE:
 for (int i = 0, n = evt.getHistorySize(); i < n; i++) {
 addDot(
 mDots,
 evt.getHistoricalX(i),
 evt.getHistoricalY(i),
 evt.getHistoricalPressure(i),
 evt.getHistoricalSize(i));
 }
 break;

 default:
 return false;
 }

 addDot(
 mDots,
 evt.getX(),
 evt.getY(),
 evt.getPressure(),
 evt.getSize());

 return true;
 }

 private void addDot(Dots dots, float x, float y, float p, float s) {
 dots.addDot(
 x,
 y,
 Color.CYAN,
 (int) ((p * s * Dot.DIAMETER) + 1));
 }
}

Here are some highlights of the code:

This loop handles batched historical events. When touch samples change more
quickly than the framework can deliver them, it bundles them into a single event.
The MotionEvent method getHistorySize returns the number of samples in the batch,
and the various getHistory methods get the subevent specifics.

Figure 10-6 shows what the extended version of the application might look like after a
few clicks and drags.

The implementation uses the size and pressure at a given location’s sample to determine
the diameter of the dot drawn there. Unfortunately, the Android emulator does not
emulate touch pressure and size, so all of the dots have the same diameter. Size and
pressure values are normalized across devices, as floating-point values between 0.0 and

Wiring Up the Controller | 175

1.0, depending on the calibration of the screen. It is possible, however, that either value
may actually be larger than 1.0. At the other end of the range, the emulator always
reports the event size as zero.

Devices with trackballs also generate MotionEvents when the trackball is moved. These
events are similar to those generated by taps on a touch-sensitive screen, but they are
handled differently. Trackball MotionEvents are passed into the View through a call to
dispatchTrackballEvent, not to dispatchTouchEvent, which delivered taps. Although
dispatchTrackballEvent does pass the event to onTrackballEvent, it does not first pass
the event to a listener! Not only are trackball-generated MotionEvents not visible
through the normal tap-handling machinery, but, in order to respond to them, a widget
must subclass View and override the onTrackballEvent method.

MotionEvents generated by the trackball are handled differently in yet another way. If
they are not consumed (to be defined shortly) they are converted into D-pad key events
(like those that would be generated by left, right, up and down arrow keys). This makes
sense when you consider that most devices have either a D-pad or a trackball, but not
both. Without this conversion, it wouldn’t be possible to generate D-pad events on a
device with only a trackball. Of course, it also implies that an application that handles
trackball events must do so carefully, lest it break the translation.

Listening for Key Events
Handling keystroke input across multiple platforms can be very tricky. Some devices
have many more keys than others, some require triple-tapping for character input, and

Figure 10-6. Running the Dots demo after adding the touch tracking feature

176 | Chapter 10: Building a View

so on. This is a great example of something that should be left to the framework
(EditText or one of its subclasses) whenever possible.

To extend a widget’s KeyEvent handling, use the View method setOnKeyListener to in-
stall an OnKeyListener. The listener will be called with multiple KeyEvents for each user
keystroke, one for each action type: DOWN, UP, and MULTIPLE. The action types DOWN and
UP indicate a key was pressed or released, just as they did for the MotionEvent class. A
key action of MULTIPLE indicates that a key is being held down (autorepeating). The
KeyEvent method getRepeatCount gives the number of keystrokes that a MULTIPLE event
represents.

Example 10-10 shows a sample key handler. When added to the demo program, it
causes dots to be added to the display at randomly chosen coordinates when keys are
pressed and released: a magenta dot when the Space key is pressed and released, a
yellow dot when the Enter key is pressed and released, and a blue dot when any other
key is pressed and released.

Example 10-10. Handling keys

dotView.setFocusable(true);

dotView.setOnKeyListener(new OnKeyListener() {
 @Override public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (KeyEvent.ACTION_UP != event.getAction()) {
 int color = Color.BLUE;
 switch (keyCode) {
 case KeyEvent.KEYCODE_SPACE:
 color = Color.MAGENTA;
 break;
 case KeyEvent.KEYCODE_ENTER:
 color = Color.YELLOW;
 break;
 default: ;
 }

 makeDot(dots, dotView, color);
 }

 return true;
 } });

Alternative Ways to Handle Events
You’ve probably noticed that the on... methods of all of the listeners introduced thus
far—including onKey—return a boolean value. This is a pattern for listeners that allows
them to control subsequent event processing by their caller.

When a Controller event is handed to a widget, the framework code in the
widget dispatches it to an appropriate method, depending on its type: onKeyDown,
onTouchEvent, etc. These methods, either in View or one its subclasses, implement the
widget’s behavior. As described earlier, though, the framework first offers the event to

Wiring Up the Controller | 177

an appropriate listener (OnTouchListener, OnKeyListener, etc.) if one exists. The lis-
tener’s return value determines whether the event is then dispatched to the View
methods.

If the listener returns false, the event is dispatched to the View methods as if the handler
did not exist. If, on the other hand, a listener returns true, the event is said to have been
consumed. The View aborts any further processing for it. The View methods are never
called and have no opportunity to process or respond to the event. As far as the View
methods are concerned, it is as if the event did not exist.

There are three ways that an event might be processed:

No listener
The event is dispatched to the View methods for normal handling. A widget im-
plementation may, of course, override these methods.

A listener exists and returns true
Listener event handling completely replaces normal widget event handling. The
event is never dispatched to the View.

A listener exists and returns false
The event is processed by the listener and then by the View. After listener event
handling is completed, the event is dispatched to the View for normal handling.

Consider, for instance, what would happen if the key listener from Example 10-10 were
added to an EditText widget. Since the onKey method always returns true, the frame-
work will abort any further KeyEvent processing as soon as the method returns. That
would prevent the EditText key-handling mechanism from ever seeing the key events,
and no text would ever appear in the text box. That is probably not the intended
behavior!

If the onKey method instead returns false for some key events, the framework will
dispatch those events to the EditText widget for continued processing. The EditText
mechanism will see the events, and the associated characters will be appended to the
EditText box, as expected. Example 10-11 shows an extension of Example 10-10 that,
besides adding new dots to the Model, also filters the characters passed to the hypo-
thetical EditText box. It allows numeric characters to be processed normally but hides
everything else.

Example 10-11. Handling keys

new OnKeyListener() {
 @Override public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (KeyEvent.ACTION_UP != event.getAction()) {
 int color = Color.BLUE;
 switch (keyCode) {
 case KeyEvent.KEYCODE_SPACE:
 color = Color.MAGENTA;
 break;
 case KeyEvent.KEYCODE_ENTER:
 color = Color.YELLOW;

178 | Chapter 10: Building a View

 break;
 default: ;
 }

 makeDot(dotModel, dotView, color);
 }

 return (keyCode < KeyEvent.KEYCODE_0)
 ||(keyCode > KeyEvent.KEYCODE_9);
 }
}

If your application needs to implement entirely new ways of handling events (in other
words, if it is something that cannot be implemented reasonably by augmenting be-
havior and filtering, using an OnKeyHandler), you will have to understand and override
View key event handling. To summarize the process, events are dispatched to the View
through the DispatchKeyEvent method. DispatchKeyEvent implements the behavior de-
scribed previously, offering the event to the onKeyHandler first. If the handler returns
false, it offers the event to the View methods implementing the KeyEvent.Callback
interface: onKeyDown, onKeyUp, and onKeyMultiple.

Advanced Wiring: Focus and Threading
As demonstrated in Example 10-9 and “Listening for Touch Events” on page 173,
MotionEvents are delivered to the widget whose bounding rectangle contains the coor-
dinates of the touch that generated them. It isn’t quite so obvious how to determine
which widget should receive a KeyEvent. In order to do this, the Android UI framework,
like most other UI frameworks, supports the concept of selection, or focus.

In order to accept focus, a widget’s focusable attribute must be set to true. This can be
done using either an XML layout attribute (the EditText Views in Example 10-3 have
their focusable attribute set to false) or the setFocusable method, as shown in the first
line of Example 10-10. A user changes which View has focus using D-pad keys or by
tapping the screen when touch is supported.

When a widget is in focus, it usually renders itself with some kind of highlighting to
provide feedback that it is the current target of keystrokes. For instance, when an
EditText widget is in focus, it is drawn both highlighted and with a cursor at the text
insert position.

To receive notification when a widget enters or leaves focus, install an OnFocusChange
Listener. Example 10-12 shows the listener needed to add a focus-related feature to
the demo program. It causes a randomly positioned black dot to be added automatically
to the DotView every now and then, whenever it is in focus.

Example 10-12. Handling focus

dotView.setOnFocusChangeListener(new OnFocusChangeListener() {
 @Override public void onFocusChange(View v, boolean hasFocus) {

Wiring Up the Controller | 179

 if (!hasFocus && (null != dotGenerator)) {
 dotGenerator.done();
 dotGenerator = null;
 }
 else if (hasFocus && (null == dotGenerator)) {
 dotGenerator = new DotGenerator(dots, dotView, Color.BLACK);
 new Thread(dotGenerator).start();
 }
} });

There should be few surprises in the OnFocusChangeListener. When the DotView comes
into focus, it creates the DotGenerator and spawns a thread to run it. When the widget
leaves focus, the DotGenerator is stopped and freed. The new data member,
dotGenerator (whose declaration is not shown in the example), is nonnull only when
the DotView is in focus. There is an important and powerful new tool in the implemen-
tation of DotGenerator, and we’ll return to it in a moment.

Focus is transferred to a particular widget by calling its View method, requestFocus.
When requestFocus is called for a new target widget, the request is passed up the tree,
parent by parent, to the tree root. The root remembers the widget that is in focus and
passes subsequent key events to it directly.

This is exactly how the UI framework changes focus to a new widget in response to a
D-pad keystroke. The framework identifies the widget that will be in focus next and
calls that widget’s requestFocus method. This causes the previously focused widget to
lose focus and the target to gain it.

The process of identifying the widget that will gain focus is complicated. In order to do
it, the navigation algorithm has to perform some tricky calculations that may depend
on the locations of every other widget on the screen.

Consider, for instance, what happens when the right D-pad button is pressed and the
framework attempts to transfer focus to the widget immediately to the right of the one
that is currently in focus. When looking at the screen, it may be completely obvious
which widget that is. In the View tree, however, it is not nearly so obvious. The target
widget may be at another level in the tree and several branches away. Identifying it
depends on the exact dimensions of widgets in yet other distant parts of the tree. For-
tunately, despite the considerable complexity, the Android UI framework implemen-
tation usually just works as expected.

When it does not, there are four properties—set either by application method or by
XML attribute—that can be used to force the desired focus navigation behavior:
nextFocusDown, nextFocusLeft, nextFocusRight, and nextFocusUp. Setting one of these
properties with a reference to a specific widget will ensure that D-pad navigation trans-
fers focus directly to that widget when navigating in the respective direction.

Another complexity of the focus mechanism is the distinction that the Android UI
framework makes between D-pad focus and touch focus, for devices with
touch-sensitive screens. To understand why this is necessary, recall that on a screen

180 | Chapter 10: Building a View

that does not accept touch input, the only way to push a button is to focus on it, using
D-pad navigation, and then to use the center D-pad key to generate a click. On a screen
that does accept touch events, however, there is never any reason to focus on a button.
Tapping the button clicks it, regardless of which widget happens to be in focus at the
time. Even on a touch-sensitive screen, however, it is still necessary to be able to focus
on a widget that accepts keystrokes—an EditText widget, for instance—in order to
identify it as the target for subsequent key events. In order to handle both kinds of focus
correctly, you will have to look into View’s handling of FOCUSABLE_IN_TOUCH_MODE, and
the View methods isFocusableInTouchMode and isInTouchMode.

In an application with multiple windows, there is at least one more twist in the focus
mechanism: it is possible for a window to lose focus without notifying the currently in-
focus widget that its focus has been lost. This makes sense when you think about it. If
the out-of-focus window is brought back to the top, the widget that was in focus in
that window will again be in focus, with no other action.

Consider entering a friend’s phone number into an address book application. Suppose
you momentarily switch back to a phone application to refresh your memory of the
last few digits of his phone number. You’d be annoyed if, on returning to the address
book, you had to focus again on the EditText box in which you’d been typing. You
expect the state to be just as you left it.

On the other hand, this behavior can have surprising side effects. In particular, the
implementation of the auto-dot feature presented in Example 10-12 continues to add
dots to the DotView even when it is hidden by another window. If a background task
should run only when a particular widget is visible, that task must be cleaned up when
the widget loses focus, when the Window loses focus, and when the Activity is paused
or stopped.

Most of the implementation of the focus mechanism is in the ViewGroup class, in meth-
ods such as requestFocus and requestChildFocus. Should it be necessary to implement
an entirely new focus mechanism, you’ll need to look carefully at these methods, and
override them appropriately.

Leaving the subject of focus and returning to the implementation of the newly added
auto-dot feature, Example 10-13 contains the implementation of DotGenerator.

Example 10-13. Enqueuing a task for the main thread

private final class DotGenerator implements Runnable {
 final Dots dots;
 final DotView view;
 final int color;

 private final Handler hdlr = new Handler();
 private final Runnable makeDots = new Runnable() {
 public void run() { makeDot(dots, view, color); }
 };

 private volatile boolean done;

Wiring Up the Controller | 181

 // Runs on the main thread
 DotGenerator(Dots dots, DotView view, int color) {
 this.dots = dots;
 this.view = view;
 this.color = color;
 }

 // Runs on the main thread
 public void done() { done = true; }

 // Runs on a different thread!
 public void run() {
 while (!done) {
 try { Thread.sleep(1000); }
 catch (InterruptedException e) { }
 hdlr.post(makeDots);
 }
 }
}

Here are some of the highlights of the code:

Creates an android.os.Handler object, the new tool introduced in this section.

Creates a new anonymous Runnable object. It is used to call MakeDot from the main
thread in item 4.

The Constructor for DotGenerator. The DotGenerator is created on the main thread.

The dot generation loop generates a new dot about every second. This is the only
part of the code that runs on a completely different thread.

A naïve implementation of DotGenerator would simply call makeDot directly within its
run method. Doing this wouldn’t be safe, however, unless makeDot was thread-safe—
and the Dots and DotView classes were too, for that matter. This would be tricky to get
correct and hard to maintain. In fact, the Android UI framework actually forbids access
to a View from multiple threads. Running the naive implementation would cause the
application to fail with an Android runtime error like this:

11-30 02:42:37.471: ERROR/AndroidRuntime(162):
 android.view.ViewRoot$CalledFromWrongThreadException:
 Only the original thread that created a view hierarchy can touch its views.

To get around this restriction, DotGenerator creates a Handler object within its con-
structor. A Handler object is associated with the thread on which it is created and pro-
vides safe, concurrent access to a canonical event queue for that thread.

Because DotGenerator creates a Handler during its own construction (which happens
on the main thread), this Handler is associated with the main thread. Now
DotGenerator can use the Handler to enqueue a Runnable that calls makeDot from the
main thread. As you might guess, it turns out that the main-thread event queue on
which the Handler enqueues the Runnable is exactly the same one that is used by the UI

182 | Chapter 10: Building a View

framework. The call to makeDot is dequeued and dispatched, like any other UI event,
in its proper order. In this case, that causes its Runnable to be run. makeDot is called from
the main thread and the UI stays single-threaded.

This is a very important pattern for coding with the Android UI framework. Whenever
processing started on behalf of the user might take more than a few milliseconds to
complete, doing that processing on the main thread might cause the entire UI to become
sluggish or, worse, to freeze for a long time. If the main application thread does not
service its event queue for a couple of seconds, the Android OS will kill the application
for being unresponsive. The Handler class allows the programmer to avoid this danger
by delegating slow or long-running tasks to other threads, so that the main thread can
continue to service the UI. When a task completes, it uses a main-thread Handler to
enqueue an update for the UI.

The demo application takes a slight shortcut here: it enqueues the creation of a new
dot and its addition to the dot model on the main thread. A more complex application
might pass a main thread Handler to the Model on creation, and provide a way for the
UI to get a model-thread Handler from the model. The main thread would receive up-
date events enqueued for it by the Model, using its main-thread Handler. The Model,
running in its own thread, would use the Looper class to dequeue and dispatch incoming
messages from the UI.

Passing events between the UI and long-running threads in this way dramatically re-
duces the constraints required to maintain thread safety. In particular, note that if an
enqueuing thread retains no references to an enqueued object, or if that object is im-
mutable, no additional synchronization is necessary.

The Menu
The final aspect of application control we’ll cover in this chapter is the menu. Exam-
ple 10-14 shows how to implement a simple menu by overriding two Activity methods.

Example 10-14. Implementing a menu

@Override public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, CLEAR_MENU_ID, Menu.NONE, "Clear");
 return true;
}

@Override public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case 1:
 dotModel.clearDots();
 return true;

 default: ;
 }

The Menu | 183

 return false;
}

When this code is added to the TouchMe class, clicking the device’s Menu key will cause
the application to present a menu (labeled “Clear” at the bottom of the screen), as
shown in Figure 10-7.

Figure 10-7. A simple menu

Clicking the Enter key or tapping the menu item again will clear the dot widget.

Interestingly, if you run this application, you will find that while the added menu item
works most of the time, it does not work when the DotView is in focus. Can you guess
why?

184 | Chapter 10: Building a View

If you guessed that the problem is caused by the OnKeyListener installed in the
DotView, you are correct! As implemented in Example 10-15, the listener swallows the
menu key event by returning true when it is clicked. This prevents the standard View
processing of the menu key keystroke. In order to make the menu work, the OnKey
Listener needs a new case, shown in Example 10-15.

Example 10-15. Improved key handling

switch (keyCode) {
 case KeyEvent.KEYCODE_MENU:
 return false;
 // ...

The Android UI framework also supports contextual menus. A ContextMenu appears in
response to a long click in a widget that supports it. The code required to add a con-
textual menu to an application is entirely analogous to that for the options menu
shown earlier except that the respective methods are onCreateContextMenu and
onContextItemSelected. Additionally, one more call is required. In order to support
contextual menus, a widget must be assigned a View.OnCreateContextMenuListener by
calling its View method, setOnCreateContextMenuListener. Fortunately, since Activity
implements the View.OnCreateContextMenuListener interface, a common idiom looks
like Example 10-16.

Example 10-16. Installing a ContextMenuListener

findViewById(R.id.ctxtMenuView).setOnCreateContextMenuListener(this);

Simply overriding the default, empty Activity implementations of the context menu
listener methods will give your application a context menu.

This chapter has shown how the Android graphical interface works overall, and has
given you the tools to manipulate its basic components: windows, Views, and events.
The following chapter explains the most useful widgets Android makes available, and
Chapter 12 shows you how to do your own graphics programming.

The Menu | 185

CHAPTER 11

A Widget Bestiary

As we have seen, there are three ways to implement a new behavior in an application.
In increasing order of complexity, you can:

• Find a toolbox widget that already does nearly what you need and extend it.

• Use the handler mechanism demonstrated previously in Example 10-4.

• Override event receiver methods and implement them yourself.

Handling raw events across multiple platforms can be quite complicated. Different
devices, for instance, may have radically different keypads: for instance, four-key versus
five-key D-pads. Some devices still require triple-tapping to enter alphabetic informa-
tion. This kind of diversity is a serious issue in the mobile environment and can be a
nightmare for the developer who wants to keep her application portable.

When designing your application, it’s clearly smart to let the framework do as much
as possible. The best option is to find some toolbox widget that has nearly the behavior
you require and extend it to meet your needs. The toolkit provides extensive tools for
doing this: XML attributes, fine-grained and overridable methods, and so on.

If it isn’t possible to customize an existing widget, you should consider the listener
mechanism, demonstrated previously in Example 10-5. Only when it is necessary to
change the existing behavior of a widget should you consider overriding event receiver
methods.

User interface frameworks have different names for the components from which they’re
composed: the text boxes, buttons, canvases, and other components that you use to
create your unique application user interface. Android generically calls them Views,
and the documentation defines them simply as:

View: An object that knows how to draw itself to the screen.

So any object that draws itself is a View, and Views that can contain or group other
Views are appropriately called ViewGroups. Views are arranged and displayed on the
screen according to a Layout, which gives Android hints about how you’d like to see
the Views arranged. In the next few sections we’ll look first at simple Views, then at

187

ViewGroups, and finally at Layouts. Since expandability is a core principle for Android,
we will also look at what you need to do to define your own custom Views and Layouts.

As we’ve already seen, Views and Layouts both have attributes that can either be defined
in Java source code or in the XML file associated with the Activity that uses the View
or Layout. When the attributes are in an XML file, they are “inflated” at runtime,
meaning that they are applied to their respective Views by the Android framework to
determine how the Views look and operate.

There are so many attributes that it doesn’t make sense to list them all in these examples.
We describe the key ones, and the rest are explained in the documentation that comes
with the Android SDK. A quick search for android.widget.view_name will give you the
class definition for that View, including all the attributes available for it, and a descrip-
tion of each.

Android Views
The Views in the following section are the meat and potatoes of your application;
essential widgets that you’ll use over and over and that your users will be familiar with
from other applications.

TextView and EditText
A TextView, as shown in the line “This is some text” in Figure 11-1, is just what you’d
expect: a place to display a text string. The vanilla TextView is for display only, whereas
EditText is a predefined subclass of TextView that includes rich editing capabilities.

Each TextView has the attributes you’d expect of such a component: you can change
its height, width, font, text color, background color, and so forth. TextViews also have
some useful unique attributes:

Figure 11-1. TextView, EditText, and Button

188 | Chapter 11: A Widget Bestiary

autoLink
If set (true), finds URLs in the displayed text and automatically converts them to
clickable links.

autoText
If set (true), finds and corrects simple spelling errors in the text.

editable
If set (true), indicates that the program has defined an input method to receive
input text (default is false for TextView, and true for EditText).

inputMethod
Identifies the input method (EditText defines one for generic text).

Example 11-1 shows how to use a TextView and an EditText with Buttons. (Buttons
are covered in the next section.) It also shows the XML layout file (main.xml), which
uses pretty standard and recommended layout parameters.

Example 11-1. Layout file for TextView and EditView example

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/txtDemo"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
<EditText
 android:id="@+id/eTxtDemo"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
<Button
 android:id="@+id/btnDone"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Log it"
 />
</LinearLayout>

Example 11-2 contains the accompanying Java source (TextViewDemo.java).

Example 11-2. Java for TextView and EditView: TextViewDemo.java

package com.oreilly.demo;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Button;

Android Views | 189

import android.widget.EditText;
import android.widget.TextView;

public class TextViewDemo extends Activity {
 private static TextView txt1;
 private static EditText etxt1;
 private static Button btn1;

 // Create a button click listener for the Done button.
 private final Button.OnClickListener btnDoneOnClick = new Button.OnClickListener() {
 public void onClick(View v) {
 String input = etxt1.getText().toString();
 //Log the input string
 Log.v("TextViewDemo", input);
 etxt1.setText("");
 }
 };

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Get pointers to the Views defined in main.xml
 txt1 = (TextView) findViewById(R.id.txtDemo);
 etxt1 = (EditText) findViewById(R.id.eTxtDemo);
 btn1 = (Button) findViewById(R.id.btnDone);

 //Set the string displayed in TextView1
 txt1.setText("This is some text.");

 //Set the OnClickListener for the Done button
 btn1.setOnClickListener(btnDoneOnClick);
 }
}

Here are some of the highlights of the code:

Defines a ClickListener that we’ll attach to the “Log it” Button.

Because onCreate is executed just once, as soon as Android instantiates this View,
we put all the configuration we need here.

Loads the XML layout file for the application by setting the ContentView to main.xml.

Finds the Views that are defined in main.xml.

Puts an initial string into the TextView. (We also could have done this in the XML
file, as was done in the MicroJobs application in “Initialization in Micro-
Jobs.java” on page 46.)

Connects the Button with the ClickListener.

190 | Chapter 11: A Widget Bestiary

Now the user can enter and edit text in the EditText, and when he clicks on “Log it”,
the OnClickListener is called and the text is written to the logcat log. The string in the
EditText is cleared out, and the widget is ready for another entry.

Button and ImageButton
The Button View is just a button, printed with some text to identify it, that the user
can click to invoke some action. The previous section created a Button and connected
it to an OnClickListener method that executes when the Button is clicked.

Android has a very visual, mobile-oriented user interface, so you might want to use a
button with an image on it rather than one with text. Android provides the ImageButton
View for just that purpose. You can adapt Example 11-2 to use an ImageButton by
making one change in the XML file and another in the Java code:

1. In main.xml, replace the Button definition for btnDone with an ImageButton:

...
<ImageButton
 android:id="@+id/btnDone"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
...

2. In TextViewDemo.java, redefine btn1 as an ImageButton and add a line to set the
image to a PNG image in the drawable directory:

...
 private static ImageButton btn1;

...
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Get pointers to the Views defined in main.xml
 txt1 = (TextView) findViewById(R.id.txtDemo);
 etxt1 = (EditText) findViewById(R.id.eTxtDemo);
 btn1 = (ImageButton) findViewById(R.id.btnDone);
...
 //Set the image for the Done button
 btn1.setImageResource(R.drawable.log);
...

The button now appears as shown in Figure 11-2.

Android Views | 191

Adapters and AdapterViews
Adapters and AdapterViews are an important and useful basis for several of the views
discussed in the rest of this chapter. Using extensions to these classes, you can address
an extremely wide variety of situations.

The AdapterView is a generic, list-oriented view of data. Any collection of data objects
that can be ordered in some relatively stable way can be displayed through an
AdapterView. An AdapterView is always associated with an Adapter, which acts as the
bridge between it and the underlying data collection. The Adapter has two
responsibilities:

• At the request of the AdapterView, the Adapter must be able to find the data object
that corresponds to a particular index. It must, in other words, be able to find the
data object that is visible in the AdapterView at a particular location.

• Inversely, the Adapter must be able to supply a view through which the data at a
particular index can be displayed.

Figure 11-2. Text boxes with an ImageButton

192 | Chapter 11: A Widget Bestiary

It takes only a moment’s reflection to understand how the AdapterView works: It is a
ViewGroup that contains all the machinery necessary to serve as both the View and
Controller for a collection of generic widgets. It can lay them out on the display, pass
in clicks and keystrokes, and so on. It need never concern itself with what the subviews
actually display; it distinguishes them only by their indexes. Whenever it needs to per-
form either of the two operations that are not entirely generic—creating a new view or
getting the data object attached to a particular view—it relies on the Adapter to convert
an index into either a data object or the view of a data object.

The AdapterView requests new views from an implementation of the Adapter interface,
as it needs them, for display. For instance, as a user scrolls though a list of contacts,
the AdapterView requests a new view for each new contact that becomes visible. As an
optimization, the AdapterView may offer a view that is no longer visible (in this case,
one that has scrolled off the display) for reuse. This can dramatically reduce memory
churn and speed up display.

When offered a recycled view, however, the Adapter must verify that it is the right kind
of view through which to display the data object at the requested index. This is neces-
sary because the Adapter is not limited to returning instances of a single view class in
response to the request for a view. If the Adapter represents several kinds of objects, it
might create several different types of views, each applicable to some subset of the data
objects in the collection. A list of contacts, for instance, might have two entirely dif-
ferent view classes: one for displaying acquaintances that are currently online and an-
other for those who are not. The latter might completely ignore clicks, whereas the
former would open a new chat session when clicked.

Although AdapterView and Adapter are both abstract and cannot be directly instanti-
ated, the UI toolkit includes several prebuilt Adapters and AdapterViews that can be used
unmodified or further subclassed to provide your own customizations. ListAdapter
and SpinnerAdapter are particularly useful Adapters, while ListView, GridView,
Spinner, and Gallery are all handy subclasses of AdapterView. If you plan to create your
own subclass of AdapterView, a quick look at the code for one of these classes will get
you off to a running start.

A good example of the use of an AdapterView can be found in “Gallery and Grid-
View” on page 198. The Gallery view in that section is a subclass of AdapterView, and
uses a subclass of Adapter called ImageAdapter.

CheckBoxes, RadioButtons, and Spinners
The Views we present in this section are probably familiar to you from other user in-
terfaces. Their purpose is to allow the user to choose from multiple options. Check-
Boxes are typically used when you want to offer multiple selections with a yes/no or
true/false choice for each. RadioButtons are used when only one choice is allowed at a
time.

Android Views | 193

Spinners are similar to combo boxes in some frameworks. A combo box typically dis-
plays the currently selected option, along with a pull-down list from which the user can
click on another option to select it.

Android has adapted these familiar components to make them more useful in a
touchscreen environment. Figure 11-3 shows the three types of multiple-choice Views
laid out on an Android application, with the Spinner pulled down to show the options.

The layout XML file that created the screen in the figure looks like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<CheckBox
 android:id="@+id/cbxBox1"
 android:layout_width="20dp"
 android:layout_height="20dp"
 android:checked="false"
 />

Figure 11-3. CheckBox, RadioButtons, and Spinner

194 | Chapter 11: A Widget Bestiary

<TextView
 android:id="@+id/txtCheckBox"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="CheckBox: Not checked"
 />
<RadioGroup
 android:id="@+id/rgGroup1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <RadioButton android:id="@+id/RB1" android:text="Button1" />
 <RadioButton android:id="@+id/RB2" android:text="Button2" />
 <RadioButton android:id="@+id/RB3" android:text="Button3" />
 </RadioGroup>
<TextView
 android:id="@+id/txtRadio"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="RadioGroup: Nothing picked"
 />
<Spinner
 android:id="@+id/spnMusketeers"
 android:layout_width="250dp"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="2dp"
 />
</LinearLayout>

The file just lists each View we want on the screen along with the attributes we want.
A RadioGroup is really a ViewGroup, so it contains the appropriate RadioButton
Views. Example 11-3 shows the Java file that responds to user clicks.

Example 11-3. Java for CheckBox, RadioButtons, and Spinner

package com.oreilly.select;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

import com.google.android.maps.GeoPoint;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.CheckBox;
import android.widget.RadioButton;
import android.widget.RadioGroup;
import android.widget.Spinner;
import android.widget.TextView;

Android Views | 195

import android.widget.AdapterView.OnItemSelectedListener;

public class SelectExample extends Activity {

 private CheckBox checkBox;
 private TextView txtCheckBox, txtRadio;
 private RadioButton rb1, rb2, rb3;
 private Spinner spnMusketeers;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 checkBox = (CheckBox) findViewById(R.id.cbxBox1);
 txtCheckBox = (TextView) findViewById(R.id.txtCheckBox);
 txtRadio = (TextView) findViewById(R.id.txtRadio);
 rb1 = (RadioButton) findViewById(R.id.RB1);
 rb2 = (RadioButton) findViewById(R.id.RB2);
 rb3 = (RadioButton) findViewById(R.id.RB3);
 spnMusketeers = (Spinner) findViewById(R.id.spnMusketeers);

 // React to events from the CheckBox
 checkBox.setOnClickListener(new CheckBox.OnClickListener() {
 public void onClick(View v){
 if (checkBox.isChecked()) {
 txtCheckBox.setText("CheckBox: Box is checked");
 }
 else
 {
 txtCheckBox.setText("CheckBox: Not checked");
 }
 }
 });

 // React to events from the RadioGroup
 rb1.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 1 picked");
 }
 });

 rb2.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 2 picked");
 }
 });

 rb3.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 3 picked");
 }
 });

196 | Chapter 11: A Widget Bestiary

 // Set up the Spinner entries
 List<String> lsMusketeers = new ArrayList<String>();
 lsMusketeers.add("Athos");
 lsMusketeers.add("Porthos");
 lsMusketeers.add("Aramis");

 ArrayAdapter<String> aspnMusketeers =
 new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item,
 lsMusketeers);
 aspnMusketeers.setDropDownViewResource
 (android.R.layout.simple_spinner_dropdown_item);
 spnMusketeers.setAdapter(aspnMusketeers);

 // Set up a callback for the spinner
 spnMusketeers.setOnItemSelectedListener(
 new OnItemSelectedListener() {
 public void onNothingSelected(AdapterView<?> arg0) { }

 public void onItemSelected(AdapterView<?> parent, View v,
 int position, long id) {

 // Code that does something when the Spinner value changes
 }
 });
 }
}

The Views work as follows:

CheckBox
The CheckBox View takes care of flipping its state back and forth and displaying
the appropriate checkmark when the state is true. All you have to do is create an
“OnClickListener” to catch click events, and you can add whatever code you want
to react.

RadioGroup
As mentioned earlier, the RadioGroup View is really a ViewGroup that contains
any number of RadioButton Views. The user can select only one of the buttons at
a time, and you capture the selections by setting OnClickListeners for each
RadioButton. Note that clicking on one of the RadioButtons does not fire a click
event for the RadioGroup.

Spinner
Spinners require the most work of these three Views, but can also provide the best
use of scarce screen real estate. As shown, the Spinner is normally collapsed to the
currently selected entry, and when you touch the down arrow on the right, it
presents a drop-down list of the other choices. To make that happen, you must:

1. Create a list of the selections (which can be a dynamic list built and changed
by your application).

2. Create an ArrayAdapter from the list that the Spinner can use for its drop-down
list. Note that the formats shown for the ArrayAdapter (simple_spinner_item

Android Views | 197

and simple_spinner_dropdown_item) are defined by Android; they do not ap-
pear in your resource XML files.

3. Create an onItemSelectedListener for the Spinner to capture select events.
The listener has to contain both an onItemSelected method and an
onNothingSelected method.

ViewGroups
ViewGroups are Views that contain child Views. Each ViewGroup class embodies a dif-
ferent set of assumptions about how to display its child Views. All ViewGroups descend
from the android.view.ViewGroup class. Layouts, which we’ll discuss later in the chap-
ter, are a subset of ViewGroups.

Gallery and GridView
The Gallery ViewGroup (Figure 11-4) displays multiple items in a horizontally scrolling
list. The currently selected item is locked in the center of the screen. Any items that
approach the edge of the screen begin to fade, giving the user the impression that there
may be more items “around the corner.” The user can scroll horizontally through the
items within the gallery. This ViewGroup is useful when you want to present a large
set of possible choices to the user without using too much screen real estate.

A GridView (Figure 11-5, shown later) is very similar to a Gallery. Like a Gallery, the
GridView displays many child Views that the user can manipulate. But in contrast to
a Gallery, which is a one-dimensional list that the user can scroll horizontally, a Grid-
View is a two-dimensional array that the user can scroll vertically.

The Gallery and GridView classes both descend from the AdapterView class, so you need
a subclass of Adapter to provide a standardized way to access the underlying data. Any
class that implements the Adapter class must implement the following abstract func-
tions from that class:

int getCount
Returns the number of items in the data set represented by the Adapter.

Object getItem(int position)
Returns the object in the Adapter function (Adapter class) at the given position.

long getItem(int position)
Returns the row ID within the Adapter of the object at the given position.

View getView(int position, View convertView, ViewGroup parent)
Returns a View object that will display the data in the given position in the data set.

The ApiDemos application’s views.Gallery1.java file shows off the Gallery ViewGroup
nicely. The demo displays a variety of images for the user to select, and when the user
does select one, the image’s index number briefly appears as toast.

198 | Chapter 11: A Widget Bestiary

The ApiDemos application also includes two example GridView Activities that show
how to use the GridView. We will not examine the GridView here, because the Gallery
example is so similar.

Example 11-4 shows how to use a Gallery ViewGroup. Example 11-4 shows the XML
layout file (gallery_1.xml).

Example 11-4. Layout file for Gallery example

<?xml version="1.0" encoding="utf-8"?>
<Gallery xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/gallery"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
/>

Here are some of the highlights of the layout code:

The id for the Gallery View is gallery. As you have seen before, the id is used by
the findViewById function to hook a Java Object to the XML object named in the
layout file.

Figure 11-4. The Gallery ViewGroup

ViewGroups | 199

layout_width is set to fill_parent so that the Gallery’s width will be the same as the
parent’s.

layout_height is set to wrap_content, meaning that the height will be as high as the
tallest child.

Figure 11-5. The GridView ViewGroup

Now we’ll turn our attention to the Java implementation, Gallery1.java, shown in
Example 11-5. We’ve modified the code from ApiDemos slightly to remove some fea-
tures that do not add to our understanding of the Gallery ViewGroup.

Example 11-5. Java for Gallery: Gallery1.java

public class Gallery1 extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.gallery_1);

 // Reference the Gallery view
 Gallery g = (Gallery) findViewById(R.id.gallery);
 // Set the adapter to our custom adapter (below)

200 | Chapter 11: A Widget Bestiary

 g.setAdapter(new ImageAdapter(this));

 // Set a item click listener, and just Toast the clicked position
 g.setOnItemClickListener(new OnItemClickListener() {
 public void onItemClick(AdapterView parent, View v, int position, long id) {
 Toast.makeText(Gallery1.this, "" + position, Toast.LENGTH_SHORT).show();
 }
 });
 }

Here are some of the highlights of the code:

In the Gallery’s onCreate method, create a Gallery object hooked to the id named
gallery from the XML layout.

Display each user option using the custom adapter defined in Example 11-6 (shown
next).

Set up a click listener on the Gallery object.

Display the the index (position) within the ImageAdapter of the photo the user
clicked on as a Toast pop up.

In Example 11-5, the setAdapter function tells the Gallery object to use the
ImageAdapter object as its Adapter. Example 11-6 defines our ImageAdapter class. This
ImageAdapter implements all of the abstract functions required in its base class,
BaseAdapter. For the simple case of this demo, picture resources represent the data that
the Gallery view is displaying. An integer array, mImageIds, contains the resource IDs
of the picture resources.

Example 11-6. Java for Gallery’s Adapter

 public class ImageAdapter extends BaseAdapter {
 int mGalleryItemBackground;

 private Context mContext;

 private Integer[] mImageIds = {
 R.drawable.gallery_photo_1,
 R.drawable.gallery_photo_2,
 R.drawable.gallery_photo_3,
 R.drawable.gallery_photo_4,
 R.drawable.gallery_photo_5,
 R.drawable.gallery_photo_6,
 R.drawable.gallery_photo_7,
 R.drawable.gallery_photo_8
 };

 public ImageAdapter(Context c) {
 mContext = c;

 TypedArray a = obtainStyledAttributes(android.R.styleable.Theme);
 mGalleryItemBackground = a.getResourceId(
 android.R.styleable.Theme_galleryItemBackground, 0);

ViewGroups | 201

 a.recycle();
 }

 public int getCount() {
 return mImageIds.length;
 }

 public Object getItem(int position) {
 return position;
 }

 public long getItemId(int position) {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 ImageView i = new ImageView(mContext);

 i.setImageResource(mImageIds[position]);
 i.setScaleType(ImageView.ScaleType.FIT_XY);
 i.setLayoutParams(new Gallery.LayoutParams(136, 88));

 // The preferred Gallery item background
 i.setBackgroundResource(mGalleryItemBackground);

 return i;
 }
 }
}

Here are some of the highlights of the code:

Defines the mImageIds array. Each element holds a resource reference to an image
that appears in the Gallery, and each image resource name maps to the filename in
the resources directory. Thus R.drawable.gallery_photo_1 maps directly to /res/
drawable/gallery_photo_1.jpg in the resource directory.

Sets the image for this position in the Gallery to the image in the corresponding
element of mImageIds.

setScaleType controls how the image is resized to match the size of its container.

This call to setLayoutParams sets the size of the ImageView container.

ListView and ListActivity
ListView is similar to Gallery, but uses a vertically scrolling list in place of Gallery’s
horizontally scrolling list. To create a ListView that takes up the entire screen, Android
provides the ListActivity class (Figure 11-6).

The ApiDemos application includes many examples of ListActivity. The simplest is the
List1 class, which displays a huge number of cheese names in a list. The cheese names
are kept in a simple String array (who knew there were that many cheese varieties!):

202 | Chapter 11: A Widget Bestiary

public class List1 extends ListActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Use an existing ListAdapter that will map an array
 // of strings to TextViews
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, mStrings));
 }

 private String[] mStrings = {
 "Abbaye de Belloc", "Abbaye du Mont des Cats", "Abertam", "Abondance",
 "Ackawi",
 "Acorn", "Adelost", "Affidelice au Chablis", "Afuega'l Pitu", "Airag",
 "Airedale",
 ...

Figure 11-6. ListActivity

Filling the ListView in the ListActivity is a simple matter of calling setListAdapter and
passing it an ArrayAdapter that contains a reference to the list of strings.

ViewGroups | 203

ScrollView
A ScrollView is a container for another View that lets the user scroll that View vertically
(a scrollbar is optional). A ScrollView often contains a LinearLayout, which in turn
contains the Views that make up the form.

Don’t confuse ScrollView with ListView. Both Views present the user with a scrollable
set of Views, but the ListView is designed to display a set of similar things, such as the
cheeses in the previous section. The ScrollView, on the other hand, allows an arbitrary
View to scroll vertically. The Android documentation warns that one should never
house a ListView within a ScrollView, because that defeats the performance optimiza-
tions of a ListView.

A ScrollView is a FrameLayout, which means that it can have only one child View. The
most popular View for this purpose is a LinearLayout.

The following layout code from ApiDemos, scroll_view_2.xml, shows how to set up a
ScrollView. The XML layout resource is sufficient; this example includes no extra Java
code:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:scrollbars="none">
 <LinearLayout
 android:id="@+id/layout"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/scroll_view_2_text_1"/>

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/scroll_view_2_button_1"/>

 </LinearLayout>
</ScrollView>

Here are some of the highlights of the code:

The unnamed ScrollView fills the width of the screen and is as tall as it needs to be
to contain all of its contents. It has no scrollbars, but that’s not a problem, because
scrollbars act only as visual queues in Android; they’re not as important in UIs that
scroll by flicking as opposed to mousing.

The child view is a LinearLayout.

204 | Chapter 11: A Widget Bestiary

The XML layout file has two controls within the LinearLayout: a TextView and a
Button. The Java code that uses this layout creates 63 more buttons, to ensure that
the example LinearLayout will be larger than the screen device and big enough to
scroll.

Figure 11-7. The first tab of a TabHost ViewGroup

Figure 11-8. The second tab of a TabHost ViewGroup

TabHost
Most modern UIs provide an interface element that lets the user flip through many
pages of information quickly using tabs, with each “screen” of information available
when its tab is pressed. Android’s option is the TabHost View. Figures 11-7 through
11-10 show how it operates.

Android enables the developer to choose between three different approaches for setting
the tab’s content. The developer can:

• Set the content of a tab to an Intent. Figures 11-7 and 11-9 use this method.

• Use a TabContentFactory to create the tab’s content on-the-fly. Figure 11-8 uses
this method.

• Retrieve the content from an XML layout file, much like that of a regular Activity.
Figure 11-10 uses this method.

ViewGroups | 205

We’ll examine each of these possibilities using a modified Activity from the ApiDemos
application. The fourth tab is not part of the ApiDemos, but combines some other
TabHost demonstration Activities in ApiDemos.

Let’s start by looking at the tabs4.xml layout file (Example 11-7).

Example 11-7. Layout file for TabHost (tabs4.xml)

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TextView android:id="@+id/view4"
 android:background="@drawable/green"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="@string/tabs_4_tab_4"/>

</FrameLayout>

Here are some of the highlights of the code:

Defines a TextView view with an id of view4. We’ll insert the TextView into a tab
in our Java code. Notice the nice green background for this tab body.

The referenced string is simply tab4.

And now we’ll dissect the Java code that produces the tabs (Example 11-8).

Figure 11-9. The third tab of a TabHost ViewGroup

Figure 11-10. The fourth tab of a TabHost ViewGroup

206 | Chapter 11: A Widget Bestiary

Example 11-8. Java for TabHost

public class Tabs4 extends TabActivity implements TabHost.TabContentFactory {

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 final TabHost tabHost = getTabHost();

 LayoutInflater.from(this).inflate(R.layout.tabs4, tabHost.getTabContentView(),
 true);

 tabHost.addTab(tabHost.newTabSpec("tab1")
 .setIndicator("intent")
 .setContent(new Intent(this, List1.class)));

 tabHost.addTab(tabHost.newTabSpec("tab2")
 .setIndicator("factory",
 getResources().getDrawable(R.drawable.star_big_on))
 .setContent(this));

 tabHost.addTab(tabHost.newTabSpec("tab3")
 .setIndicator("destroy")
 .setContent(new Intent(this, Controls2.class)
 .addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP)));

 tabHost.addTab(tabHost.newTabSpec("tab4")
 .setIndicator("layout")
 .setContent(R.id.view4));
 }

 public View createTabContent(String tag) {
 final TextView tv = new TextView(this);
 tv.setText("Content for tab with tag " + tag);
 return tv;
 }
}

Here are some of the highlights of the code:

To implement tabs, you need to extend TabActivity instead of just Activity. This
gives you all the tab functionality.

The tabHost variable allows you to define the tabs and their contents.

This basically says “using the LayoutInflater from my current Context, inflate the
XML layout referenced by R.layout.tabs4 into the content section of the tabHost.”
Whew. As mentioned before, XML layout files are normally inflated automatically
when setContentView runs. However, in this case the XML layout must be instanti-
ated manually. Note that this XML layout is used only in the fourth tab.

Sets up the first tab (Figure 11-7). The title is arbitrary, but we’ve called this tab
intent as documentation that its contents are an Intent.

ViewGroups | 207

Set the content of the first tab to the List1.class in this application. This simply
brings up the referenced class in the tab. This is a slick way to make the contents of
a regular application visible inside a tab.

Now we’re setting up the second tab (Figure 11-8). This is how you put an image
on a tab face.

This tab’s contents are filled in by a factory method in this class. Notice that the
class implements the TabHost.TabContentFactory interface.

Set the content for the third tab (Figure 11-9) from an Intent. Using an Intent here
is similar to navigating from one Activity in your application to another by using an
intent. However, using tabs, the user can navigate back and forth between separate
parts of your application quickly and easily.

Adding this flag to the tabHost creates a new instance of the View each time it is
displayed. In the case of the demo, all changes to the UI will be lost if you navigate
away from the tab and then back to it.

This tab displays the TextView from the XML layout item referenced by
R.id.view4. The TextView was set up in item 1 of Example 11-7.

This is the factory method that creates the view for the second tab. The factory must
return a view that the tab will use as its content. In this case, we create a very simple
TextView that displays the tag associated with the tab.

Layouts
Layouts are Android’s solution to the variety of screens that come on Android devices:
they can have different pixel densities, different dimensions, and different aspect ratios.
Typical Android devices, such as the HTC G1 mobile phone, even allow changing the
screen orientation (portrait or landscape) while applications are running, so the layout
infrastructure needs to be able to respond on the fly. Layouts are intended to give
developers a way to express the physical relationship of Views as they are drawn on the
screen. As Android inflates the Layout, it uses the developer requests to come up with
a screen layout that best approximates what the developer has asked for.

Looking a little deeper, layouts in Android are in the form of a tree, with a single root
and a hierarchy of Views. Look back at any of the XML Layout files in the previous
section and you’ll see that the XML tags create just such a hierarchy, with a screen
Layout as the root of the tree. Each View in the tree is termed the parent of the Views
it contains and the child of the View that contains it. Layout is a two-pass process:

Measure pass
Traversing the tree from the root, each View in the layout records its dimensional
request—in other words, how much vertical height and horizontal width it needs
to display itself in the final display.

208 | Chapter 11: A Widget Bestiary

Layout pass
Again traversing the tree from the root, each parent View uses the available layout
information to position its children as requested. If the requests can’t be followed
explicitly, Android does its best to make everything fit on the screen. If there are
no requests given, it uses a default set of layout parameters. Each parent can pass
layout information on to its children, telling them where they are positioned and
what screen dimensions they have been granted (they might get less than they
requested).

A Layout is a View itself, so there’s nothing wrong with having multiple Layouts in a
single layout XML file—they just have to be arranged in a hierarchy. So it’s perfectly
valid to have a vertical LinearLayout that includes a TableLayout as one of its rows.
You’ll learn a lot more about layouts in Chapter 12.

Frame Layout
The Frame Layout is sort of a null layout specification. It reserves space on the screen
for a single View to be drawn, and the View is always located at the upper left of the
space. There is no way to specify a different location for the View, and there can be
only one View in the Layout. If more than one View is defined in the layout file, they
are just drawn on top of each other, all pinned to the upper-left corner.

LinearLayout
LinearLayouts are used extensively in Android applications, and we used them in ex-
ample code earlier. A LinearLayout asks that the contained Views be layed out as either
a series of rows (vertical LinearLayout) or a series of columns (horizontal
LinearLayout). In a vertical LinearLayout, all the rows are the same width (the width
of the widest child). In a horizontal LinearLayout, there is one row of Views, all the
same height (the height of the tallest child).

Figure 11-11 shows an example of a vertical LinearLayout, and Figure 11-12 is an ex-
ample of a horizontal one. Both have EditText Views as children. Example 11-9 shows
the XML resource file that produces the vertical layout, and Example 11-10 shows the
file that created the horizontal one.

Example 11-9. Vertical LinearLayout resource file

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="EditText1"

Layouts | 209

 />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="EditText2"
 />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="EditText3"
 />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="EditText4"
 />
</LinearLayout>

Figure 11-11. Vertical LinearLayout

Example 11-10. Horizontal LinearLayout resource file

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

210 | Chapter 11: A Widget Bestiary

 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<EditText
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:text="E1"
 />
<EditText
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:text="E2"
 />
<EditText
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:text="E3"
 />
<EditText
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:text="E4"
 />
</LinearLayout>

Figure 11-12. Horizontal LinearLayout

Layouts | 211

The horizontal layout might not look exactly as you would think: how come E4 is
narrower than the other three? The answer is that there is a default minimum width for
an EditText. If you build and run the horizontal example and type something into
EditText E1, you’ll see that it expands in width as the line gets longer, which is just
what we asked for with android:layout_width="wrap_content".

In addition to the usual dimensional parameters for child Views (width,
height, padding), you can include a weight for each child (attribute
android:layout_weight=;weight). The weight tells the layout manager how you want
to use unfilled space, and defaults to a value of 0. If you specify children with weights
greater than zero, the layout manager will allocate unused space to each child in pro-
portion to its weight.

Figure 11-13 shows an example of a LinearLayout containing four EditTexts. The first
two have no weights assigned. EditText3 has a weight of 1 and EditText4 has a weight
of 2. The effect is to make EditText4 twice as big as EditText3, while EditText1 and
EditText2 just split whatever space the layout leaves over.

Figure 11-13. Weighted LinearLayout

212 | Chapter 11: A Widget Bestiary

TableLayout
A TableLayout is just what you’d expect: it lays out the included Views in the form of
a table (similar to an HTML table). We can create a table of TextViews to show how
you would create that kind of screen for an application. Here’s an example TableLayout
XML file:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tblJobs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TableRow
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:text="Cell 11"
 android:id="@+id/btnCel11"
 android:layout_width="20dip"
 android:layout_height="wrap_content"
 />
 <TextView
 android:id="@+id/txtCell12"
 android:layout_width="20dip"
 android:layout_height="wrap_content"
 android:text="Cell 12"
 />
 <TextView
 android:id="@+id/txtCell13"
 android:layout_width="20dip"
 android:layout_height="wrap_content"
 android:text="Cell 13"
 />
 <TextView
 android:id="@+id/txtCell14"
 android:layout_width="20dip"
 android:layout_height="wrap_content"
 android:text="Cell 14"
 />
 </TableRow>
 <TableRow
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:text="Cell 21"
 android:id="@+id/btnCo21"
 android:layout_width="80dip"
 android:layout_height="wrap_content"
 />
 <TextView
 android:id="@+id/txtCell22"
 android:layout_width="80dip"
 android:layout_height="wrap_content"
 android:text="Cell 22"
 />
 <TextView

Layouts | 213

 android:id="@+id/txtCell23"
 android:layout_width="80dip"
 android:layout_height="wrap_content"
 android:text="Cell 23"
 />
 <TextView
 android:id="@+id/txtCell24"
 android:layout_width="80dip"
 android:layout_height="wrap_content"
 android:text="Cell 24"
 />
 </TableRow>
</TableLayout>

Figure 11-14 shows the resulting layout on the emulator screen.

Figure 11-14. TableLayout

The structure of the XML file is pretty evident: the TableLayout tags contain a list of
TableRows that in turn contain the Views you want to appear on each line of the table.
Notice that the layout_width values are different in the two rows—all the widths in the
first row are specified as 20dip, whereas the widths in the second row are specified as

214 | Chapter 11: A Widget Bestiary

28dip—yet the columns line up on the screen. To preserve the look of a table, Android
makes each column as wide as the widest cell in that column.

Of course, the cells are addressable from your Java code, and you can add rows pro-
grammatically to the table, if that’s what your application needs to do.

AbsoluteLayout
An AbsoluteLayout puts views on the screen wherever you tell it to. It doesn’t try to
resize anything, and it doesn’t try to line anything up; it just puts things where it’s told.
You might think that it would be an easy type of layout to use, since you don’t have to
second-guess how the layout manager is going to rearrange things on your screen, but
in practice the use of AbsoluteLayout is a bad idea for almost all applications. You
usually want your application to run on as many Android devices as possible, and the
strength of the Android layout manager is that it will automatically adapt your screen
layout from device to device. AbsoluteLayout bypasses most of the layout manager,
and while your application may look perfect on the device you used for development,
the odds are very good that it will look terrible on other Android devices.

That warning aside, let’s take a look at an AbsoluteLayout XML file:

<?xml version="1.0" encoding="utf-8"?>
<AbsoluteLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Upper Left"
 android:layout_x="0.0px"
 android:layout_y="0.0px"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Middle"
 android:layout_x="140.0px"
 android:layout_y="200.0px"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Lower Right"
 android:layout_x="240.0px"
 android:layout_y="400.0px"
 />
</AbsoluteLayout>

As with any dimension in a layout file, the positions can be expressed in pixels (px),
device-independent pixels (dp), scaled pixels (sp), inches (in), or millimeters (mm), and

Layouts | 215

the dimension has to be a floating-point number. (For more about expressing sizes, see
“Dimensions in Android” on page 51 in Chapter 4.)

Figure 11-15 shows the resulting screen layout. Obviously, the position (0, 0) is the
upper-left corner of the display, and the View is properly flush with the corner. The
lower-right corner on the emulator is supposed to be (320, 480), but the View appears
to be a little shy of that in both dimensions.

Just to caution against the use of AbsoluteLayout again, we suggest you try changing
the emulator skin to show the screen in landscape mode (enter emulator
-skin HVGA-L from a command or terminal window before you run the application),
and you can see in Figure 11-16 that the application no longer looks right.

RelativeLayout
We’ve used RelativeLayout, often in combination with LinearLayout, throughout the
MJAndroid application. The advantage of RelativeLayout is that you can express the

Figure 11-15. AbsoluteLayout

216 | Chapter 11: A Widget Bestiary

relative positioning of the Views in the screen, and the layout manager will do its best
to fit them all on the screen in the proper relations. An example follows:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/txtText1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Text1"
 android:gravity="top"
 android:layout_alignParentRight="true"
 />
 <TextView
 android:id="@+id/txtText2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Text2"
 android:layout_below="@+id/txtText1"
 />
 <Button
 android:id="@+id/btnButton1"
 android:layout_width="150dp"
 android:layout_height="wrap_content"
 android:text="Button1"
 android:layout_below="@+id/txtText2"
 />

Figure 11-16. Same AbsoluteLayout in landscape mode

Layouts | 217

 <Button
 android:id="@+id/btnButton2"
 android:layout_width="150dp"
 android:layout_height="100dp"
 android:text="Button2"
 android:layout_toRightOf="@+id/btnButton1"
 android:layout_alignTop="@+id/btnButton1"
 />
</RelativeLayout>

Lays out Text1 at the top of the screen.

Aligns Text1 with the right side of its parent (which is the screen itself).

Places Text2 below Text1.

Places Button1 below Text2.

Places Button2 just to the right of Button1.

Aligns the tops of the two buttons.

Figure 11-17 shows what this looks like in portrait mode (the emulator default), and
Figure 11-18 shows it in landscape mode. The layout manager has adjusted the ar-
rangements in each case to match the layout hints we gave in the XML.

Figure 11-17. RelativeLayout in portrait mode

218 | Chapter 11: A Widget Bestiary

Figure 11-18. RelativeLayout in landscape mode

Layouts | 219

CHAPTER 12

Drawing 2D and 3D Graphics

The Android menagerie of widgets and the tools for assembling them are convenient,
powerful, and cover a broad variety of needs. What happens, though, when none of
the existing widgets offer what you need? Maybe your application needs to represent
playing cards, phases of the moon, or the power diverted to the main thrusters of a
rocket ship. In that case, you’ll have to know how to roll your own.

This chapter is an overview of graphics and animation on Android. It’s directed at
programmers with some background in graphics, and goes into quite a bit of depth
about ways to twist and turn the display. You will definitely need to supplement this
chapter with Android documentation, particularly because the more advanced inter-
faces are still undergoing changes. But the techniques here will help you dazzle your
users.

Rolling Your Own Widgets
As mentioned earlier, “widget” is a just convenient term for a subclass of
android.view.View, typically for a leaf node in the view tree. Many views are just con-
tainers for other views and are used for layout; we don’t consider them widgets, because
they don’t directly interact with the user, handle events, etc. So the term “widget,”
although informal, is useful for discussing the workhorse parts of the user interface that
have the information and the behavior users care about.

You can accomplish a lot without creating a new widget. Chapter 11 constructed ap-
plications consisting entirely of existing widgets or simple subclasses of existing widg-
ets. The code in that chapter demonstrated building trees of views, laying them out in
code or in layout resources in XML files.

Similarly, the MicroJobs application has a view that contains a list of names corre-
sponding to locations on a map. As additional locations are added to the map, new
name-displaying widgets are added dynamically to the list. Even this dynamically
changing layout is just a use of pre-existing widgets; it does not create new ones. The
techniques in MicroJobs are, figuratively, adding or removing boxes from a tree like
the one illustrated in Figure 10-3 in Chapter 10.

221

In contrast, this chapter shows you how to roll your own widget, which involves looking
under the View hood.

The simplest customizations start with TextView, Button, DatePicker, or one of the many
widgets presented in the previous chapter. For more extensive customization, you will
implement your own widget as a direct subclass of View.

A very complex widget, perhaps used as an interface tool implemented in several places
(even by multiple applications), might even be an entire package of classes, only one
of which is a descendant of View.

This chapter is about graphics, and therefore about the View part of the
Model-View-Controller pattern. Widgets also contain Controller code, which is good
design because it keeps together all of the code relevant to a behavior and its represen-
tation on the screen. This part of this chapter discusses only the implementation of the
View; the implementation of the Controller was discussed in Chapter 10.

Concentrating on graphics, then, we can break the tasks of this chapter into two es-
sential parts: finding space on the screen and drawing in that space. The first task is
known as layout. A leaf widget can assert its space needs by defining an onMeasure
method that the Android framework will call at the right time. The second task, actually
rendering the widget, is handled by the widget’s onDraw method.

Layout
Most of the heavy lifting in the Android framework layout mechanism is implemen-
ted by container views. A container view is one that contains other views. It is an internal
node in the view tree and subclasses of ViewGroup (which, in turn, subclasses View).
The framework toolkit provides a variety of sophisticated container views that provide
powerful and adaptable strategies for arranging a screen. AbsoluteLayout (see “Abso-
luteLayout” on page 215), LinearLayout (see “LinearLayout” on page 209), and
RelativeLayout (see “RelativeLayout” on page 216), to name some common ones, are
container views that are both relatively easy to use and fairly hard to reimplement
correctly. Since they are already available, fortunately you are unlikely to have to im-
plement most of the algorithm discussed here. Understanding the big picture, though—
how the framework manages the layout process—will help you build correct, robust
widgets.

Example 12-1 shows a widget that is about as simple as it can be, while still working.
If added to some Activity’s view tree, this widget will fill in the space allocated to it
with the color cyan. Not very interesting, but before we move on to create anything
more complex, let’s look carefully at how this example fulfills the two basic tasks of
layout and drawing. We’ll start with the layout process; drawing will be described later
in the section “Canvas Drawing” on page 226.

222 | Chapter 12: Drawing 2D and 3D Graphics

Example 12-1. A trivial widget

public class TrivialWidget extends View {

 public TrivialWidget(Context context) {
 super(context);
 setMinimumWidth(100);
 setMinimumHeight(20);
 }

 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 setMeasuredDimension(
 getSuggestedMinimumWidth(),
 getSuggestedMinimumHeight());
 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.CYAN);
 }
}

Dynamic layout is necessary because the space requirements for widgets change dy-
namically. Suppose, for instance, that a widget in a GPS-enabled application displays
the name of the city in which you are currently driving. As you go from “Ely” to “Post
Mills,” the widget receives notification of the change in location. When it prepares to
redraw the city name, though, it notices that it doesn’t have enough room for the whole
name of the new town. It needs to request that the screen be redrawn in a way that
gives it more space, if that is possible.

Layout can be a surprisingly complex task and very difficult to get right. It is probably
not very hard to make a particular leaf widget look right on a single device. On the
other hand, it can be very tricky to get a widget that must arrange children to look right
on multiple devices, even when the dimensions of the screen change.

Layout is initiated when the requestLayout method is invoked on some view in the view
tree. Typically, a widget calls requestLayout on itself when it needs more space. The
method could be invoked, though, from any place in an application, to indicate that
some view in the current screen no longer has enough room to draw itself.

The requestLayout method causes the Android UI framework to enqueue an event on
the UI event queue. When the event is processed, in order, the framework gives every
container view an opportunity to ask each of its child widgets how much space each
child would like for drawing. The process is separated into two phases: measuring the
child views and then arranging them in their new positions. All views must implement
the first phase, but the second is necessary only in the implementations of container
views that must manage the layout of child views.

Rolling Your Own Widgets | 223

Measurement

The goal of the measurement phase is to provide each view with an opportunity to
dynamically request the space it would ideally like for drawing. The UI framework
starts the process by invoking the measure method of the view at the root of the view
tree. Starting there, each container view asks each of its children how much space it
would prefer. The call is propagated to all descendants, depth first, so that every child
gets a chance to compute its size before its parent. The parent computes its own size
based on the sizes of its children and reports that to its parent, and so on, up the tree.

In “Assembling a Graphical Interface” on page 161, for instance, the topmost
LinearLayout asks each of the nested LinearLayout widgets for its preferred dimensions.
They in turn ask the Buttons or EditText views they contain for theirs. Each child reports
its desired size to its parent. The parents then add up the sizes of the children, along
with any padding they insert themselves, and report the total to the topmost
LinearLayout.

Because the framework must guarantee certain behaviors for all Views, during this
process, the measure method is final and cannot be overridden. Instead, measure calls
onMeasure, which widgets may override to claim their space. In other words, widgets
cannot override measure, but they can override onMeasure.

The arguments to the onMeasure method describe the space the parent is willing to make
available: a width specification and a height specification, measured in pixels.
The framework assumes that no view will ever be smaller than 0 or bigger than 230

pixels in size and, therefore, it uses the high-order bits of the passed int parameter to
encode the measurement specification mode. It is as if onMeasure were actually called
with four arguments: the width specification mode, the width, the height specification
mode, and the height. Do not be tempted to do your own bit-shifting to separate the
pairs of arguments! Instead, use the static methods MeasureSpec.getMode and
MeasureSpec.getSize.

The specification modes describe how the container view wants the child to interpret
the associated size. There are three of them:

MeasureSpec.EXACTLY
The calling container view has already determined the exact size of the child view.

MeasureSpec.AT_MOST
The calling container view has set a maximum size for this dimension, but the child
is free to request less.

MeasureSpec.UNSPECIFIED
The calling container view has not imposed any limits on the child, and so the child
may request anything it chooses.

A widget is always responsible for telling its parent in the view tree how much space it
needs. It does this by calling setMeasuredDimensions to set the properties that
then become available to the parent, through the methods getMeasuredHeight and

224 | Chapter 12: Drawing 2D and 3D Graphics

getMeasuredWidth. If your implementation overrides onMeasure but does not call
setMeasuredDimensions, the measure method will throw IllegalStateException in-
stead of completing normally.

The default implementation of onMeasure, inherited from View, calls set
MeasuredDimensions with one of two values, in each direction. If the parent specifies
MeasureSpec.UNSPECIFIED, it uses the default size of the view: the value supplied by
either getSuggestedMinimumWidth or getSuggestedMinimumHeight. If the parent specifies
either of the other two modes, the default implementation uses the size that was offered
by the parent. This is a very reasonable strategy and allows a typical widget implemen-
tation to handle the measurement phase completely, simply by setting the values
returned by getSuggestedMinimumWidth and getSuggestedMinimumHeight.

Your widget may not actually get the space it requests. Consider a view that is 100
pixels wide and has three children. It is probably obvious how the parent should arrange
its children if the sum of the pixel widths requested by the children is 100 or less. If,
however, each child requests 50 pixels, the parent container view is not going to be able
to satisfy them all.

A container view has complete control of how it arranges its children. In the circum-
stance just described, it might decide to be “fair” and allocate 33 pixels to each child.
Just as easily, it might decide to allocate 50 pixels to the leftmost child and 25 to each
of the other two. In fact, it might decide to give one of the children the entire 100 pixels
and nothing at all to the others. Whatever its method, though, in the end the parent
determines a size and location for the bounding rectangle for each child.

Another example of a container view’s control of the space allocated to a widget comes
from the example widget shown previously in Example 12-1. It always requests the
amount of space it prefers, regardless of what it is offered (unlike the default imple-
mentation). This strategy is handy to remember for widgets that will be added to the
toolkit containers, notably LinearLayout, that implement gravity. Gravity is a property
that some views use to specify the alignment of their subelements. The first time you
use one of these containers, you may be surprised to find that, by default, only the first
of your custom widgets gets drawn! You can fix this either by using the setGravity
method to change the property to Gravity.FILL or by making your widgets insistent
about the amount of space they request.

It is also important to note that a container view may call a child’s measure method
several times during a single measurement phase. As part of its implementation of
onMeasure, a clever container view, attempting to lay out a horizontal row of widgets,
might call each child widget’s measure method with mode MEASURE_SPEC.UNSPECIFIED
and a width of 0 to find out what size the widget would prefer. Once it has collected
the preferred widths for each of its children, it could compare the sum to the actual
width available (which was specified in its parent’s call to its measure method). Now it
might call each child widget’s measure method again, this time with the mode
MeasureSpec.AT_MOST and a width that is an appropriate proportion of the space actually

Rolling Your Own Widgets | 225

available. Because measure may be called multiple times, an implementation of
onMeasure must be idempotent and must not change the application state.

A container view’s implementation of onMeasure is likely to be fairly complex.
ViewGroup, the superclass of all container views, does not supply a default implemen-
tation. Each of the UI framework container views has its own. If you contemplate im-
plementing a container view, you might consider basing it on one of them. If, instead,
you implement measurement from scratch, you are still likely to need to call measure
for each child and should consider using the ViewGroup helper methods: measure
Child, measureChildren, and measureChildWithMargins. At the conclusion of the meas-
urement phase, a container view, like any other widget, must report the space it needs
by calling setMeasuredDimensions.

Arrangement

Once all the container views in the view tree have had a chance to negotiate the sizes
of each of their children, the framework begins the second phase of layout, which
consists of arranging the children. Again, unless you implement your own container
view, you probably will never have to implement your own arrangement code. This
section describes the underlying process so that you can better understand how it might
affect your widgets. The default method, implemented in View, will work for typical
leaf widgets, as demonstrated previously by Example 12-1.

Because a view’s onMeasure method might be called several times, the framework must
use a different method to signal that the measurement phase is complete and that con-
tainer views must fix the final locations of their children. Like the measurement phase,
the arrangement phase is implemented with two methods. The framework invokes a
final method, layout, at the top of the view tree. The layout method performs pro-
cessing common to all views and then delegates to onLayout, which custom widgets
override to implement their own behaviors. A custom implementation of onLayout must
at least calculate the bounding rectangle that it will supply to each child when it is
drawn and, in turn, invoke the layout method for each child (because it might also be
a parent to other widgets).

It is worth reiterating that a widget is not guaranteed to receive the space it requests. It
must be prepared to draw itself in whatever space is actually allocated to it. If it attempts
to draw outside the space allocated to it by its parent, the drawing will be clipped by
the clip rectangle. To exert fine control—to fill exactly the space allocated to it, for
instance—a widget must either implement onLayout and record the dimensions of the
allocated space or inspect the clip rectangle of the Canvas that is the parameter to onDraw.

Canvas Drawing
Now that we’ve explored how widgets allocate the space on the screen in which they
draw themselves, we can turn to coding some widgets that actually do some drawing.

226 | Chapter 12: Drawing 2D and 3D Graphics

The Android framework handles drawing in a way that should be familiar, now that
you’ve read about measurement and arrangement. When some part of the application
determines that the current screen drawing is stale because some state has changed, it
calls the View method invalidate. This call causes a redraw event to be added to the
event queue.

Eventually, when that event is processed, the framework calls the draw method at the
top of the view tree. This time the call is propagated preorder, with each view drawing
itself before it calls its children. This means that leaf views are drawn after their parents,
which are, in turn, drawn after their parents. Views that are lower in the tree appear to
be drawn on top of those nearer the root of the tree.

The draw method calls onDraw, which a subclass overrides to implement its custom
rendering. When your widget’s onDraw method is called, it must render itself according
to the current application state and return. It turns out, by the way, that neither
View.draw nor ViewGroup.dispatchDraw (responsible for the traversal of the view tree) is
final! Override them at your peril!

In order to prevent extra painting, the framework maintains some state information
about the view, called the clip rectangle. A key concept in the UI framework, the clip
rectangle is part of the state passed in calls to a component’s graphical rendering meth-
ods. It has a location and size that can be retrieved and adjusted through methods on
the Canvas, and it acts like a stencil through which a component does all of its drawing.
By correctly setting the size, shape, and location of the clip rectangle aperture, the
framework can prevent a component from drawing outside its boundaries or redrawing
regions that are already correctly drawn.

Before proceeding to the specifics of drawing, let’s again put the discussion in the con-
text of Android’s single-threaded MVC design pattern. There are two essential rules:

• Drawing code should be inside the onDraw method. Your widget should draw itself
completely, reflecting the program’s current state, when onDraw is invoked.

• A widget should draw itself as quickly as possible when onDraw is invoked. The
middle of the call to onDraw is no time to run a complex database query or to
determine the status of some distant networked service. All the state you need to
draw should be cached and ready for use at drawing time. Long-running tasks
should use a separate thread and the Handler mechanism described in “Advanced
Wiring: Focus and Threading” on page 179. The model state cached in the view is
sometimes called the view-model.

The Android UI framework uses four main classes in drawing. If you are going to im-
plement custom widgets and do your own drawing, you will want to become very
familiar with them:

Canvas (a subclass of android.graphics.Canvas)
The canvas has no complete analog in real-life materials. You might think of it as
a complex easel that can orient, bend, and even crumple the paper on which you

Rolling Your Own Widgets | 227

are drawing in interesting ways. It maintains the clip rectangle, the stencil through
which you paint. It can also scale drawings as they are drawn, like a photographic
enlarger. It can even perform other transformations for which material analogs are
more difficult to find: mapping colors and drawing text along paths.

Paint (a subclass of android.graphics.Paint)
This is the medium with which you will draw. It controls the color, transparency,
and brush size for objects painted on the canvas. It also controls font, size, and
style when drawing text.

Bitmap (a subclass of android.graphics.Bitmap)
This is the paper you are drawing on. It holds the actual pixels that you draw.

Drawables (likely a subclass of android.graphics.drawable.Drawable)
This is the thing you want to draw: a rectangle or image. Although not all of the
things that you draw are Drawables (text, for instance, is not), many, especially the
more complex ones, are.

Example 12-1 used only the Canvas, passed as a parameter to onDraw, to do its drawing.
In order to do anything more interesting, we will need Paint, at the very least. Paint
provides control over the color and transparency (alpha) of the graphics drawn with it.
Paint has many, many other capabilities, some of which are described in
“Bling” on page 243. Example 12-2, however, is enough to get you started. Explore
the class documentation for other useful attributes.

The graphic created by the code in the example is shown in Figure 12-1.

Example 12-2. Using Paint

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 Paint paint = new Paint();

 canvas.drawLine(33, 0, 33, 100, paint);

 paint.setColor(Color.RED);
 paint.setStrokeWidth(10);
 canvas.drawLine(56, 0, 56, 100, paint);

 paint.setColor(Color.GREEN);
 paint.setStrokeWidth(5);

 for (int y = 30, alpha = 255; alpha > 2; alpha >>= 1, y += 10) {
 paint.setAlpha(alpha);
 canvas.drawLine(0, y, 100, y, paint);
 }
}

228 | Chapter 12: Drawing 2D and 3D Graphics

Figure 12-1. Using Paint

With the addition of Paint, we are prepared to understand most of the other tools
necessary to create a useful widget. Example 12-3, for instance, is the widget used
previously in Example 10-7. While still not very complex, it demonstrates all the pieces
of a fully functional widget. It handles layout and highlighting, and reflects the state of
the model to which it is attached.

Example 12-3. Dot widget

package com.oreilly.android.intro.view;

import android.content.Context;

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Paint.Style;

import android.view.View;

import com.oreilly.android.intro.model.Dot;
import com.oreilly.android.intro.model.Dots;

public class DotView extends View {
 private final Dots dots;

 /**
 * @param context the rest of the application
 * @param dots the dots we draw
 */
 public DotView(Context context, Dots dots) {
 super(context);
 this.dots = dots;
 setMinimumWidth(180);
 setMinimumHeight(200);
 setFocusable(true);
 }

 /** @see android.view.View#onMeasure(int, int) */
 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 setMeasuredDimension(
 getSuggestedMinimumWidth(),
 getSuggestedMinimumHeight());

Rolling Your Own Widgets | 229

 }

 /** @see android.view.View#onDraw(android.graphics.Canvas) */
 @Override protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 Paint paint = new Paint();
 paint.setStyle(Style.STROKE);
 paint.setColor(hasFocus() ? Color.BLUE : Color.GRAY);
 canvas.drawRect(0, 0, getWidth() - 1, getHeight() -1, paint);

 paint.setStyle(Style.FILL);
 for (Dot dot : dots.getDots()) {
 paint.setColor(dot.getColor());
 canvas.drawCircle(
 dot.getX(),
 dot.getY(),
 dot.getDiameter(),
 paint);
 }
 }
}

As with Paint, we have only enough space to begin an exploration of Canvas methods.
There are two groups of functionality, however, that are worth special notice.

Drawing text

The most important Canvas methods are those used to draw text. Although some
Canvas functionality is duplicated in other places, text-rendering capabilities are not.
In order to put text in your widget, you will have to use the Canvas (or, of course,
subclass some other widget that uses it).

Canvas methods for rendering text come in pairs: three sets of two signatures. Exam-
ple 12-4 shows one of the pairs.

Example 12-4. A pair of text drawing methods

public void drawText(String text, float x, float y, Paint paint)
public void drawText(char[] text, int index, int count, float x, float y, Paint paint)

There are several pairs of methods. In each pair, the first of the two methods in the pair
uses String, and the second uses three parameters to describe the text: an array of
char, the index indicating the first character in that array to be drawn, and the number
of total characters in the text to be rendered. In some cases, there are additional con-
venience methods.

Example 12-5 contains an onDraw method that demonstrates the use of the first style of
each of the three pairs of text rendering methods. The output is shown in Figure 12-2.

230 | Chapter 12: Drawing 2D and 3D Graphics

Example 12-5. Three ways of drawing text

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 Paint paint = new Paint();

 paint.setColor(Color.RED);
 canvas.drawText("Android", 25, 30, paint);

 Path path = new Path();
 path.addArc(new RectF(10, 50, 90, 200), 240, 90);
 paint.setColor(Color.CYAN);
 canvas.drawTextOnPath("Android", path, 0, 0, paint);

 float[] pos = new float[] {
 20, 80,
 29, 83,
 36, 80,
 46, 83,
 52, 80,
 62, 83,
 68, 80
 };
 paint.setColor(Color.GREEN);
 canvas.drawPosText("Android", pos, paint);
}

As you can see, the most elementary of the pairs, drawText, simply draws text at the
passed coordinates. With DrawTextOnPath, on the other hand, you can draw text along
any Path. The example path is just an arc. It could just as easily have been a line drawing
or a Bezier curve.

For those occasions on which even DrawTextOnPath is insufficient, Canvas offers
DrawPosText, which lets you specify the exact position of each character in the text.
Note that the character positions are specified by alternating array elements:
x1,y1,x2,y2, and so on.

Matrix transformations

The second interesting group of Canvas methods are the Matrix transformations and
their related convenience methods, rotate, scale, and skew. These methods transform
what you draw in ways that will immediately be recognizable to those familiar with 3D

Figure 12-2. Output from three ways of drawing text

Rolling Your Own Widgets | 231

graphics. They allow a single drawing to be rendered in ways that can make it appear
as if the viewer were moving with respect to the objects in the drawing.

The small application in Example 12-6 demonstrates the Canvas’s coordinate transfor-
mation capabilities.

Example 12-6. Using a Canvas

import android.app.Activity;

import android.content.Context;

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;

import android.os.Bundle;

import android.view.View;

import android.widget.LinearLayout;

public class TranformationalActivity extends Activity {

 private interface Transformation {
 void transform(Canvas canvas);
 String describe();
 }

 private static class TransfomedViewWidget extends View {
 private final Transformation transformation;

 public TransfomedViewWidget(Context context, Transformation xform) {
 super(context);

 transformation = xform;

 setMinimumWidth(160);
 setMinimumHeight(105);
 }

 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 setMeasuredDimension(
 getSuggestedMinimumWidth(),
 getSuggestedMinimumHeight());
 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 Paint paint = new Paint();

232 | Chapter 12: Drawing 2D and 3D Graphics

 canvas.save();
 transformation.transform(canvas);

 paint.setTextSize(12);
 paint.setColor(Color.GREEN);
 canvas.drawText("Hello", 40, 55, paint);

 paint.setTextSize(16);
 paint.setColor(Color.RED);
 canvas.drawText("Android", 35, 65, paint);

 canvas.restore();

 paint.setColor(Color.BLACK);
 paint.setStyle(Paint.Style.STROKE);
 Rect r = canvas.getClipBounds();
 canvas.drawRect(r, paint);

 paint.setTextSize(10);
 paint.setColor(Color.BLUE);
 canvas.drawText(transformation.describe(), 5, 100, paint);
 }

}

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.transformed);

 LinearLayout v1 = (LinearLayout) findViewById(R.id.v_left);
 v1.addView(new TransfomedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "identity"; }
 @Override public void transform(Canvas canvas) { }
 }));
 v1.addView(new TransfomedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "rotate(-30)"; }
 @Override public void transform(Canvas canvas) {
 canvas.rotate(-30.0F);
 } }));
 v1.addView(new TransfomedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "scale(.5,.8)"; }
 @Override public void transform(Canvas canvas) {
 canvas.scale(0.5F, .8F);
 } }));
 v1.addView(new TransfomedViewWidget(
 this,
 new Transformation() {

Rolling Your Own Widgets | 233

 @Override public String describe() { return "skew(.1,.3)"; }
 @Override public void transform(Canvas canvas) {
 canvas.skew(0.1F, 0.3F);
 } }));

 LinearLayout v2 = (LinearLayout) findViewById(R.id.v_right);
 v2.addView(new TransfomedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "translate(30,10)"; }
 @Override public void transform(Canvas canvas) {
 canvas.translate(30.0F, 10.0F);
 } }));
 v2.addView(new TransfomedViewWidget(
 this,
 new Transformation() {
 @Override public String describe()
 { return "translate(110,-20),rotate(85)"; }
 @Override public void transform(Canvas canvas) {
 canvas.translate(110.0F, -20.0F);
 canvas.rotate(85.0F);
 } }));
 v2.addView(new TransfomedViewWidget(
 this,
 new Transformation() {
 @Override public String describe()
 { return "translate(-50,-20),scale(2,1.2)"; }
 @Override public void transform(Canvas canvas) {
 canvas.translate(-50.0F, -20.0F);
 canvas.scale(2F, 1.2F);
 } }));
 v2.addView(new TransfomedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "complex"; }
 @Override public void transform(Canvas canvas) {
 canvas.translate(-100.0F, -100.0F);
 canvas.scale(2.5F, 2F);
 canvas.skew(0.1F, 0.3F);
 } }));
 }
}

The results of this protracted exercise are shown in Figure 12-3.

Here are some of the highlights of the code:

Definition of the new widget, TransfomedViewWidget.

Gets the actual transformation to perform from the second argument of the
constructor.

onDraw method of TransfomedViewWidget.

Pushes the state on the stack through save before performing any transformation.

234 | Chapter 12: Drawing 2D and 3D Graphics

Performs the transformation passed in item 2.

Restores the old state saved in item 4, having finished the transformation.

The Activity’s onCreate method.

Creates the first layout view.

Instantiations of TransfomedViewWidget, added to layout view v1.

Creates a transformation as part of the parameter list to the constructor of
TransfomedViewWidget.

Creates the second layout view.

Instantiations of TransfomedViewWidget, added to layout view v2.

This small application introduces several new ideas and demonstrates the power of
Android graphics for maintaining state and nesting changes.

The application defines a single widget, TransformedViewWidget, of which it creates
eight instances. For layout, the application creates two views named v1 and v2, retriev-
ing their parameters from resources. It then adds four instances of TransformedView
Widget to each LinearLayout view. This is an example of how applications combine

Figure 12-3. Transformed views

Rolling Your Own Widgets | 235

resource-based and dynamic views. Note that the creation both of the layout views and
the new widgets take place within the Activity’s onCreate method.

This application also makes the new widget flexible through a sophisticated division
of labor between the widget and its Transformation. Several simple objects are drawn
directly within the definition of TransformedViewWidget, in its onDraw method:

• A white background

• The word “Hello” in 12-point green type

• The word “Android” in 16-point red type

• A black frame

• A blue label

In the middle of this, the onDraw method performs a transformation specified at its
creation. The application defines its own interface, called Transformation, and the con-
structor for TransformedViewWidget accepts a Transformation as a parameter. We’ll see
in a moment how the caller actually codes a transformation.

It’s important to see first how the widget onDraw preserves its own text from being
affected by the Transformation. In this example, we want to make sure that the frame
and label are drawn last, so that they are drawn over anything else drawn by the widget,
even if they might overlap. On the other hand, we do not want the transformation
applied earlier to affect them.

Fortunately, the Canvas maintains an internal stack onto which we can record and
recover the translation matrix, clip rectangle, and many other elements of mutable state
in the Canvas. Taking advantage of this stack, onDraw calls save to preserve its state
before the transformation, and restore afterward to recover the saved state.

The rest of the application controls the transformation used in each of the eight in-
stances of TransformedViewWidget. Each new instance of the widget is created with its
own anonymous instance of Tranformation. The image in the area labeled “identity”
has no translation applied. The other seven areas are labeled with the transformations
they demonstrate.

The base methods for Canvas translation are setMatrix and concatMatrix. These two
methods allow you to build any possible transformation. The getMatrix method allows
you to recover a dynamically constructed matrix for later use. The methods introduced
in the example—translate, rotate, scale, and skew—are convenience methods that
compose specific, constrained matrixes into the current Canvas state.

Although it may not be obvious at first, these transformation functions can be tremen-
dously useful. They allow your application to appear to change its point of view with
respect to a 3D object. It doesn’t take too much imagination, for instance, to see the
scene in the square labeled “scale(.5,.8)” as the same as that seen in the square labeled
“identity”, but viewed from farther away. With a bit more imagination, the image in
the box labeled “skew(.1,.3)” again could be the untransformed image, but this time

236 | Chapter 12: Drawing 2D and 3D Graphics

viewed from above and slightly to the side. Scaling or translating an object can make
it appear to a user as if the object has moved. Skewing and rotating can make it appear
that the object has turned. We will make good use of this technique in animation.

When you consider that these transformation functions apply to everything drawn on
a canvas—lines, text, and even images—their importance in applications becomes even
more apparent. A view that displays thumbnails of photos could be implemented triv-
ially, though perhaps not optimally, as a view that scales everything it displays to 10%
of its actual size. An application that simulates what you see as you look to your left
while driving down the street might be implemented in part by scaling and skewing a
small number of images.

Drawables
A Drawable is an object that knows how to render itself on a Canvas. Because a
Drawable has complete control during rendering, even a very complex rendering process
can be encapsulated in a way that makes it fairly easy to use.

Examples 12-7 and 12-8 show the changes necessary to implement the previous ex-
ample, Figure 12-3, using a Drawable. The code that draws the red and green text has
been refactored into a HelloAndroidTextDrawable class, used in rendering by the
widget’s onDraw method.

Example 12-7. Using a TextDrawable

private static class HelloAndroidTextDrawable extends Drawable {
 private ColorFilter filter;
 private int opacity;

 public HelloAndroidTextDrawable() {}

 @Override
 public void draw(Canvas canvas) {
 Paint paint = new Paint();

 paint.setColorFilter(filter);
 paint.setAlpha(opacity);

 paint.setTextSize(12);
 paint.setColor(Color.GREEN);
 canvas.drawText("Hello", 40, 55, paint);

 paint.setTextSize(16);
 paint.setColor(Color.RED);
 canvas.drawText("Android", 35, 65, paint);
}

 @Override
 public int getOpacity() { return PixelFormat.TRANSLUCENT; }

 @Override

Rolling Your Own Widgets | 237

 public void setAlpha(int alpha) { }

 @Override
 public void setColorFilter(ColorFilter cf) { }
}

Using the new Drawable implementation requires only a few small changes to the
onDraw method.

Example 12-8. Using a Drawable widget

package com.oreilly.android.intro.widget;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import android.graphics.drawable.Drawable;
import android.view.View;

/**A widget that renders a drawable with a transformation */
public class TransformedViewWidget extends View {

 /** A transformation */
 public interface Transformation {
 /** @param canvas */
 void transform(Canvas canvas);
 /** @return text descriptiont of the transform. */
 String describe();
 }

 private final Transformation transformation;
 private final Drawable drawable;

 /**
 * Render the passed drawable, transformed.
 *
 * @param context app context
 * @param draw the object to be drawn, in transform
 * @param xform the transformation
 */
 public TransformedViewWidget(
 Context context,
 Drawable draw,
 Transformation xform)
 {
 super(context);

 drawable = draw;
 transformation = xform;

 setMinimumWidth(160);
 setMinimumHeight(135);

238 | Chapter 12: Drawing 2D and 3D Graphics

 }

 /** @see android.view.View#onMeasure(int, int) */
 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 setMeasuredDimension(
 getSuggestedMinimumWidth(),
 getSuggestedMinimumHeight());
 }

 /** @see android.view.View#onDraw(android.graphics.Canvas) */
 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 canvas.save();
 transformation.transform(canvas);
 drawable.draw(canvas);
 canvas.restore();

 Paint paint = new Paint();
 paint.setColor(Color.BLACK);
 paint.setStyle(Paint.Style.STROKE);
 Rect r = canvas.getClipBounds();
 canvas.drawRect(r, paint);

 paint.setTextSize(10);
 paint.setColor(Color.BLUE);
 canvas.drawText(
 transformation.describe(),
 5,
 getMeasuredHeight() - 5,
 paint);
 }
}

This code begins to demonstrate the power of using a Drawable. This implementation
of TransformedViewWidget will transform any Drawable, no matter what it happens to
draw. It is no longer tied to rotating and scaling our original, hardcoded text. It can be
reused to transform both the text from the previous example and a photo captured
from the camera, as Figure 12-4 demonstrates. It could even be used to transform a
Drawable animation.

The ability to encapsulate complex drawing tasks in a single object with a straightfor-
ward API is a valuable—and even necessary—tool in the Android toolkit. Drawables
make complex graphical techniques such as nine-patches and animation tractable. In
addition, since they wrap the rendering process completely, Drawables can be nested to
decompose complex rendering into small reusable pieces.

Consider for a moment how we might extend the previous example to make each of
the six images fade to white over a period of a minute. Certainly, we could just change

Rolling Your Own Widgets | 239

the code in Example 12-8 to do the fade. A different—and very appealing—imple-
mentation involves writing one new Drawable.

This new Drawable, FaderDrawable, will take, in its constructor, a reference to its target,
the Drawable that it will fade to white. In addition, it must have some notion of time,
probably an integer—let’s call it t—that is incremented by a timer. Whenever the
draw method of FaderDrawable is called, it first calls the draw method of its target. Next,
it paints over exactly the same area with the color white, using the value of t to deter-
mine the transparency (alpha value) of the paint (as demonstrated in Example 12-2).
As time passes, t gets larger, the white gets more and more opaque, and the target
Drawable fades to white.

This hypothetical FaderDrawable demonstrates some of the important features of
Drawables. First, note that FaderDrawable is nicely reusable: it will fade just about any
Drawable. Also note that, since FaderDrawable extends Drawable, we can use it anywhere
that we would have used its target, the Drawable that it fades to white. Any code that
uses a Drawable in its rendering process can use a FaderDrawable without change.

Of course, a FaderDrawable could itself be wrapped. In fact, it seems possible to achieve
very complex effects, simply by building a chain of Drawable wrappers. The Android
toolkit provides Drawable wrappers that support this strategy, including ClipDrawable,
RotateDrawable, and ScaleDrawable.

Figure 12-4. Transformed views with photos

240 | Chapter 12: Drawing 2D and 3D Graphics

At this point you may be mentally redesigning your entire UI in terms of Drawables.
Although a powerful tool, they are not a panacea. There are several issues to keep in
mind when considering the use of Drawables.

You may well have noticed that they share a lot of the functionality of the View class:
location, dimensions, visibility, etc. It’s not always easy to decide when a View should
draw directly on the Canvas, when it should delegate to a subview, and when it should
delegate to one or more Drawable objects. There is even a DrawableContainer class that
allows grouping several child Drawables within a parent. It is possible to build trees of
Drawables that parallel the trees of Views we’ve been using so far. In dealing with the
Android framework, you just have to accept that sometimes there is more than one way
to scale a cat.

One difference between the two choices is that Drawables do not implement the View
measure/layout protocol, which allows a container view to negotiate the layout of its
components in response to changing view size. When a renderable object needs to add,
remove, or lay out internal components, it’s a pretty good indication that it should be
a full-fledged View instead of a Drawable.

A second issue to consider is that Drawables completely wrap the drawing process be-
cause they are not drawn like String or Rect objects. There are, for instance, no
Canvas methods that will render a Drawable at specific coordinates. You may find your-
self deliberating over whether, in order to render a certain image twice, a View onDraw
method should use two different, immutable Drawables or a single Drawable twice, re-
setting its coordinates.

Perhaps most important, though, is a more generic problem. The idea of a chain of
Drawables works because the Drawable interface contains no information about the in-
ternal implementation of the Drawable. When your code is passed a Drawable, there is
no way for it to know whether it is something that will render a simple image or a
complex chain of effects that rotates, flashes, and bounces. Clearly this can be a big
advantage. But it can also be a problem.

Quite a bit of the drawing process is stateful. You set up Paint and then draw with it.
You set up Canvas clip regions and transformations and then draw through them. When
cooperating in a chain, if Drawables change state, they must be very careful that those
changes never collide. The problem is that, when constructing a Drawable chain, the
possibility of collision cannot be explicit in the object’s type by definition (they are all
just Drawables). A seemingly small change might have an effect that is not desirable and
is difficult to debug.

To illustrate the problem, consider two Drawable wrapper classes, one that is meant to
shrink its contents and another that is meant to rotate them by 90 degrees. If either is
implemented by setting the transformation matrix to a specific value (instead of com-
posing its transformation with any that already exist), composing the two Drawables
may not have the desired effect. Worse, it might work perfectly if A wraps B, but not
if B wraps A! Careful documentation of how a Drawable is implemented is essential.

Rolling Your Own Widgets | 241

Bitmaps
The Bitmap is the last member of the four essentials for drawing: something to draw (a
String, Rect, etc.), Paint with which to draw, a Canvas on which to draw, and the
Bitmap to hold the bits. Most of the time, you don’t have to deal directly with a
Bitmap, because the Canvas provided as an argument to the onDraw method already has
one behind it. However, there are circumstances under which you may want to use a
Bitmap directly.

A common use for a Bitmap is as a way to cache a drawing that is time-consuming to
draw but unlikely to change frequently. Consider, for example, a drawing program that
allows the user to draw in multiple layers. The layers act as transparent overlays on a
base image, and the user turns them off and on at will. It might be very expensive to
actually draw each individual layer every time onDraw gets called. Instead, it might be
faster to render the entire drawing with all visible layers once, and only update it when
the user changes which are visible.

The implementation of such an application might look something like Example 12-9.

Example 12-9. Bitmap caching

private class CachingWidget extends View {
 private Bitmap cache;

 public CachingWidget(Context context) {
 super(context);
 setMinimumWidth(200);
 setMinimumHeight(200);
 }

 public void invalidateCache() {
 cache = null;
 invalidate();
 }

 @Override
 protected void onDraw(Canvas canvas) {
 if (null == cache) {
 cache = Bitmap.createBitmap(
 getMeasuredWidth(),
 getMeasuredHeight(),
 Bitmap.Config.ARGB_8888);

 drawCachedBitmap(new Canvas(cache));
 }

 canvas.drawBitmap(cache, 0, 0, new Paint());
 }

 // ... definition of drawCachedBitmap
}

242 | Chapter 12: Drawing 2D and 3D Graphics

This widget normally just copies the cached Bitmap, cache, to the Canvas passed to
onDraw. If the cache is marked stale (by calling invalidateCache), only then will
drawCachedBitmap be called to actually render the widget.

The most common way to encounter a Bitmap is as the programmatic representation
of a graphics resource. Resources.getDrawable returns a BitmapDrawable when the re-
source is an image.

Combining these two ideas—caching an image and wrapping it in a Drawable—opens
yet another interesting window. It means that anything that can be drawn can also be
postprocessed. An application that used all of the techniques demonstrated in this
chapter could allow a user to draw furniture in a room (creating a bitmap) and then to
walk around it (using the matrix transforms).

Bling
The Android UI framework is a lot more than a just an intelligent, well-put-together
GUI toolkit. When it takes off its glasses and shakes out its hair, it can be downright
sexy! The tools mentioned here certainly do not make an exhaustive catalog. They
might get you started, though, on the path to making your application Filthy Rich.

Several of the techniques discussed in this section are close to the edges
of the Android landscape. As such, they are less well established: the
documentation is not as thorough, some of the features are clearly in
transition, and you may even find bugs. If you run into problems, the
Google Group “Android Developers” is an invaluable resource. Ques-
tions about a particular aspect of the toolkit have sometimes been an-
swered by the very person responsible for implementing that aspect.

Be careful about checking the dates on solutions you find by searching
the Web. Some of these features are changing rapidly, and code that
worked as recently as six months ago may not work now. A corollary,
of course, is that any application that gets wide distribution is likely to
be run on platforms that have differing implementations of the features
discussed here. By using these techniques, you may limit the lifetime of
your application and the number of devices that it will support.

The rest of this section considers a single application, much like the one used in Ex-
ample 12-6: a couple of LinearLayouts that contain multiple instances of a single widget,
each demonstrating a different graphics effect. Example 12-10 contains the key parts
of the widget, with code discussed previously elided for brevity. The widget simply
draws a few graphical objects and defines an interface through which various graphics
effects can be applied to the rendering.

Bling | 243

Example 12-10. Effects widget

public class EffectsWidget extends View {

 /** The effect to apply to the drawing */
 public interface PaintEffect { void setEffect(Paint paint); }

 // ...

 // PaintWidget's widget rendering method
 protected void onDraw(Canvas canvas) {
 Paint paint = new Paint();
 paint.setAntiAlias(true);

 effect.setEffect(paint);
 paint.setColor(Color.DKGRAY);

 paint.setStrokeWidth(5);
 canvas.drawLine(10, 10, 140, 20, paint);

 paint.setTextSize(26);
 canvas.drawText("Android", 40, 50, paint);

 paint = new Paint();
 paint.setColor(Color.BLACK);
 canvas.drawText(String.valueOf(id), 2.0F, 12.0F, paint);
 paint.setStyle(Paint.Style.STROKE);
 paint.setStrokeWidth(2);
 canvas.drawRect(canvas.getClipBounds(), paint);
 }
}

The application that uses this widget, shown in Example 12-11, should also feel famil-
iar. It creates several copies of the EffectsWidget, each with its own effect. There are
two special widgets: the bottom widget in the right column is animated, and the bottom
widget in the left column uses OpenGL animation.

Example 12-11. Effects application

private void buildView() {
 setContentView(R.layout.main);

 LinearLayout view = (LinearLayout) findViewById(R.id.v_left);
 view.addView(new EffectsWidget(
 this,
 1,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setShadowLayer(1, 3, 4, Color.BLUE);
 } }));
 view.addView(new EffectsWidget(
 this,
 3,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {

244 | Chapter 12: Drawing 2D and 3D Graphics

 paint.setShader(
 new LinearGradient(
 0.0F,
 0.0F,
 160.0F,
 80.0F,
 new int[] { Color.BLACK, Color.RED, Color.YELLOW },
 new float[] { 0.2F, 0.3F, 0.2F },
 Shader.TileMode.REPEAT));
 } }));
 view.addView(new EffectsWidget(
 this,
 5,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setMaskFilter(
 new BlurMaskFilter(2, BlurMaskFilter.Blur.NORMAL));
 } }));

 // Not and EffectsWidget: this is the OpenGL Anamation widget.
 glWidget = new GLDemoWidget(this);
 view.addView(glWidget);

 view = (LinearLayout) findViewById(R.id.v_right);
 view.addView(new EffectsWidget(
 this,
 2,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setShadowLayer(3, -8, 7, Color.GREEN);
 } }));
 view.addView(new EffectsWidget(
 this,
 4,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setShader(
 new LinearGradient(
 0.0F,
 40.0F,
 15.0F,
 40.0F,
 Color.BLUE,
 Color.GREEN,
 Shader.TileMode.MIRROR));
 } }));

 // A widget with an animated background
 View w = new EffectsWidget(
 this,
 6,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) { }
 });

Bling | 245

 view.addView(w);
 w.setBackgroundResource(R.drawable.throbber);

 // This is, alas, necessary until Cupcake.
 w.setOnClickListener(new OnClickListener() {
 @Override public void onClick(View v) {
 ((AnimationDrawable) v.getBackground()).start();
 } });
}

Figure 12-5 shows what the code looks like when run. The bottom two widgets are
animated: the green checkerboard moves from left to right across the widget, and the
bottom-right widget has a throbbing red background.

Figure 12-5. Graphics effects

Shadows, Gradients, and Filters
PathEffect, MaskFilter, ColorFilter, Shader, and ShadowLayer are all attributes of Paint.
Anything drawn with Paint can be drawn under the influence of one or more of these
transformations. The top several widgets in Figure 12-5 give examples of some of these
effects.

Widgets 1 and 2 demonstrate shadows. Shadows are currently controlled by the
setShadowLayer method. The arguments, a blur radius and X and Y displacements,
control the apparent distance and position of the light source that creates the shadow,
with respect to the shadowed object. Although this is a very neat feature, the docu-
mentation explicitly warns that it is a temporary API. However, it seems unlikely that
the setShadowLayer method will completely disappear or even that future implemen-
tations will be backward-incompatible.

246 | Chapter 12: Drawing 2D and 3D Graphics

The Android toolkit contains several prebuilt shaders. Widgets 3 and 4 demonstrate
one of them, the LinearGradient shader. A gradient is a regular transition between
colors that might be used, for example, to give a page background a bit more life,
without resorting to expensive bitmap resources.

A LinearGradient is specified with a vector that determines the direction and rate of
the color transition, an array of colors through which to transition, and a mode. The
final argument, the mode, determines what happens when a single complete transition
through the gradient is insufficient to cover the entire painted object. For instance, in
widget 4, the transition is only 15 pixels long, whereas the drawing is more than 100
pixels wide. Using the mode Shader.TileMode.Mirror causes the transition to repeat,
alternating direction across the drawing. In the example, the gradient transitions from
blue to green in 15 pixels, then from green to blue in the next 15, and so on across the
canvas.

Animation
The Android UI toolkit offers several different animation tools. Transition
animations—which the Google documentation calls tweened animations—are sub-
classes of android.view.animation.Animation: RotateAnimation, TranslateAnimation,
ScaleAnimation, etc. These animations are used as transitions between pairs of views.
A second type of animation, subclasses of android.graphics.drawable.Animation
Drawable, can be put into the background of any widget to provide a wide variety of
effects. Finally, there is full-on animation, on top of a SurfaceView that gives you full
control to do your own seat-of-the-pants animation.

Because both of the first two types of animation, transition and background, are sup-
ported by View—the base class for all widgets—every widget, toolkit, and custom will
potentially support them.

Transition animation

A transition animation is started by calling the View method startAnimation with an
instance of Animation (or, of course, your own subclass). Once installed, the animation
runs to completion: transition animations have no pause state.

The heart of the animation is its applyTransformation method. This method is called
to produce successive frames of the animation. Example 12-12 shows the implemen-
tation of one transformation. As you can see, it does not actually generate entire graph-
ical frames for the animation. Instead, it generates successive transformations to be
applied to a single image being animated. You will recall, from the section “Matrix
transformations” on page 231, that matrix transformations can be used to make an
object appear to move. Transition animations depend on exactly this trick.

Bling | 247

Example 12-12. Transition animation

@Override
protected void applyTransformation(float t, Transformation xf) {
 Matrix xform = xf.getMatrix();

 float z = ((dir > 0) ? 0.0f : -Z_MAX) - (dir * t * Z_MAX);

 camera.save();
 camera.rotateZ(t * 360);
 camera.translate(0.0F, 0.0F, z);
 camera.getMatrix(xform);
 camera.restore();

 xform.preTranslate(-xCenter, -yCenter);
 xform.postTranslate(xCenter, yCenter);
}

This particular implementation makes its target appear to spin in the screen plane (the
rotate method call), and at the same time, to shrink into the distance (the translate
method call). The matrix that will be applied to the target image is obtained from the
Transformation object passed in that call.

This implementation uses camera, an instance of the utility class Camera. The Camera
class—not to be confused with the camera in the phone—is a utility that makes it
possible to record rendering state. It is used here to compose the rotation and transla-
tions transformations into a single matrix, which is then stored as the animation
transformation.

The first parameter to applyTransformation, named t, is effectively the frame number.
It is passed as a floating-point number between 0.0 and 1.0, and might also be under-
stood as the percent of the animation that is complete. This example uses t to increase
the apparent distance along the Z-axis (a line perpendicular to the plane of the screen)
of the image being animated, and to set the proportion of one complete rotation through
which the image has passed. As t increases, the animated image appears to rotate fur-
ther and further counter-clockwise and to move farther and farther away, along the
Z-axis, into the distance.

The preTranslate and postTranslate operations are necessary in order to translate the
image around its center. By default, matrix operations transform their target around
the origin. If we did not perform these bracketing translations, the target image would
appear to rotate around its upper-left corner. preTranslate effectively moves the origin
to the center of the animation target for the translation, and postTranslate causes the
default to be restored after the translation.

If you consider what a transition animation must do, you’ll realize that it is likely to
compose two animations: the previous screen must be animated out and the next one
animated in. Example 12-12 supports this using the remaining, unexplained variable
dir. Its value is either 1 or –1, and it controls whether the animated image seems to

248 | Chapter 12: Drawing 2D and 3D Graphics

shrink into the distance or grow into the foreground. We need only find a way to
compose a shrink and a grow animation.

This is done using the familiar Listener pattern. The Animation class defines a listener
named Animation.AnimationListener. Any instance of Animation that has a nonnull
listener calls that listener once when it starts, once when it stops, and once for each
iteration in between. Creating a listener that notices when the shrinking animation
completes and spawns a new growing animation will create exactly the effect we desire.
Example 12-13 shows the rest of the implementation of the animation.

Example 12-13. Transition animation composition

public void runAnimation() {
 animateOnce(new AccelerateInterpolator(), this);
}

@Override
public void onAnimationEnd(Animation animation) {
 root.post(new Runnable() {
 public void run() {
 curView.setVisibility(View.GONE);
 nextView.setVisibility(View.VISIBLE);
 nextView.requestFocus();
 new RotationTransitionAnimation(-1, root, nextView, null)
 .animateOnce(new DecelerateInterpolator(), null);
 } });
}

void animateOnce(
 Interpolator interpolator,
 Animation.AnimationListener listener)
{
 setDuration(700);
 setInterpolator(interpolator);
 setAnimationListener(listener);
 root.startAnimation(this);
}

The runAnimation method starts the transition. The overridden AnimationListener
method, onAnimationEnd, spawns the second half. Called when the target image appears
to be far in the distance, it hides the image being animated out (the curView) and replaces
it with the newly visible image, nextView. It then creates a new animation that, running
in reverse, spins and grows the new image into the foreground.

The Interpolater class represents a nifty attention to detail. The values for t, passed
to applyTransformation, need not be linearly distributed over time. In this implemen-
tation the animation appears to speed up as it recedes, and then to slow again as the
new image advances. This is accomplished by using the two interpolators:
AccelerateInterpolator for the first half of the animation and DecelerateInter
polator for the second. Without the interpolator, the difference between successive
values of t, passed to applyTransformation, would be constant. This would make the

Bling | 249

animation appear to have a constant speed. The AccelerateInterpolator converts those
equally spaced values of t into values that are close together at the beginning of the
animation and much further apart toward the end. This makes the animation appear
to speed up. DecelerateInterpolator has exactly the opposite effect. Android also pro-
vides a CycleInterpolator and LinearInterpolator, for use as appropriate.

Animation composition is actually built into the toolkit, using the (perhaps confusingly
named) AnimationSet class. This class provides a convenient way to specify a list of
animations to be played, in order (fortunately not a Set: it is ordered and may refer to
a given animation more than once). In addition, the toolkit provides several
standard transitions: AlphaAnimation, RotateAnimation, ScaleAnimation, and
TranslateAnimation. Certainly, there is no need for these transitional animations to be
symmetric, as they are in the previous implementation. A new image might alpha fade
in as the old one shrinks into a corner or slide up from the bottom as the old one fades
out. The possibilities are endless.

Background animation

Frame-by-frame animation, as it is called in the Google documentation, is completely
straightforward: a set of frames, played in order at regular intervals. This kind of ani-
mation is implemented by subclasses of AnimationDrawable.

As subclasses of Drawable, AnimationDrawable objects can be used in any context that
any other Drawable is used. The mechanism that animates them, however, is not a part
of the Drawable itself. In order to animate, an AnimationDrawable relies on an external
service provider—an implementation of the Drawable.Callback interface—to animate
it.

The View class implements this interface and can be used to animate an Animation
Drawable. Unfortunately, it will supply animation services only to the one Drawable
object that is installed as its background with one of the two methods setBackground
Drawable or setBackgroundResource.

The good news, however, is that this is probably sufficient. A background animation
has access to the entire widget canvas. Everything it draws will appear to be behind
anything drawn by the View.onDraw method, so it would be hard to use the background
to implement full-fledged sprites (animation integrated into a static scene). Still, with
clever use of the DrawableContainer class (which allows you to animate several different
animations simultaneously) and because the background can be changed at any time,
it is possible to accomplish quite a bit without resorting to implementing your own
animation framework.

An AnimationDrawable in a view background is entirely sufficient to do anything from,
say, indicating that some long-running activity is taking place—maybe winged packets
flying across the screen from a phone to a tower—to simply making a button’s back-
ground pulse.

250 | Chapter 12: Drawing 2D and 3D Graphics

The pulsing button example is illustrative and surprisingly easy to implement. Exam-
ples 12-14 and 12-15 show all you need. The animation is defined as a resource, and
code applies it to the button.

Example 12-14. Frame-by-frame animation (resource)

<animation-list
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/throbber_f0" android:duration="70" />
 <item android:drawable="@drawable/throbber_f1" android:duration="70" />
 <item android:drawable="@drawable/throbber_f2" android:duration="70" />
 <item android:drawable="@drawable/throbber_f3" android:duration="70" />
 <item android:drawable="@drawable/throbber_f4" android:duration="70" />
 <item android:drawable="@drawable/throbber_f5" android:duration="70" />
 <item android:drawable="@drawable/throbber_f6" android:duration="70" />
</animation-list>

Example 12-15. Frame-by-frame animation (code)

// w is a button that will "throb"
button.setBackgroundResource(R.drawable.throbber);

//!!! This is necessary, but should not be so in Cupcake
button.setOnClickListener(new OnClickListener() {
 @Override public void onClick(View v) {
 AnimationDrawable animation
 = (AnimationDrawable) v.getBackground();
 if (animation.isRunning()) { animation.stop(); }
 else { animation.start(); }
 // button action.
 } });

There are several gotchas here, though. First of all, as of this writing, the animation-
list example in the Google documentation does not quite work. There is a problem
with the way it identifies the animation-list resource. To make it work, don’t define
an android:id in that resource. Instead, simply refer to the object by its filename
(R.drawable.throbber), as Example 12-15 demonstrates.

The second issue is that a bug in the V1_r2 release of the toolkit prevents a background
animation from being started in the Activity.onCreate method. If your application’s
background should be animated whenever it is visible, you’ll have to use trickery to
start it. The example implementation uses an onClick handler. There are suggestions
on the Web that the animation can also be started successfully from a thread that pauses
briefly before calling AnimationDrawable.start. The Android development team has a
fix for this problem, so the constraint should be relaxed with the release of Cupcake.

Finally, if you have worked with other UI frameworks, especially Mobile UI frame-
works, you may be accustomed to painting the view background in the first couple of
lines of the onDraw method (or equivalent). If you do that in Android, however, you will
paint over your animation. It is, in general, a good idea to get into the habit of using

Bling | 251

setBackground to control the View background, whether it is a solid color, a gradient,
an image, or an animation.

Specifying an AnimationDrawable by resource is very flexible. You can specify a list of
drawable resources—any images you like—that comprise the animation. If your ani-
mation needs to be dynamic, AnimationDrawable is a straightforward recipe for creating
a dynamic drawable that can be animated in the background of a View.

Surface view animation

Full-on animation requires a SurfaceView. The SurfaceView provides a node in the view
tree (and, therefore, space on the display) on which any process at all can draw. The
SurfaceView node is laid out, sized, and receives clicks and updates, just like any other
widget. Instead of drawing, however, it simply reserves space on the screen, preventing
other widgets from affecting any of the pixels within its frame.

Drawing on a SurfaceView requires implementing the SurfaceHolder.Callback inter-
face. The two methods surfaceCreated and surfaceDestroyed inform the implementor
that the drawing surface is available for drawing and that it has become unavailable,
respectively. The argument to both of the calls is an instance of yet a third class,
SurfaceHolder. In the interval between these two calls, a drawing routine can call the
SurfaceView methods lockCanvas and unlockCanvasAndPost to edit the pixels there.

If this seems complex, even alongside some of the elaborate animation discussed pre-
viously…well, it is. As usual, concurrency increases the likelihood of nasty, hard-to-
find bugs. The client of a SurfaceView must be sure that access to any state shared across
threads is properly synchronized, and also that it never touches the SurfaceView,
Surface, or Canvas except in the interval between the calls to surfaceCreated and
surfaceDestroyed. The toolkit could clearly benefit from a more complete framework
support for SurfaceView animation.

If you are considering SurfaceView animation, you are probably also considering
OpenGL graphics. As we’ll see, there is an extension available for OpenGL animation
on a SurfaceView. It will turn up in a somewhat out-of-the-way place, though.

OpenGL Graphics
The Android platform supports OpenGL graphics in roughly the same way that a silk
hat supports rabbits. Although this is certainly among the most exciting technologies
in Android, it is definitely at the edge of the map. It also appears that just before the
final beta release, the interface underwent major changes. Much of the code and many
of the suggestions found on the Web are obsolete and no longer work.

The API V1_r2 release is an implementation of OpenGL ES 1.0 and much of ES 1.1. It
is, essentially, a domain-specific language embedded in Java. Someone who has been
doing gaming UIs for a while is likely to be much more comfortable developing Android

252 | Chapter 12: Drawing 2D and 3D Graphics

OpenGL programs than a Java programmer, even a programmer who is a Java UI
expert.

Before discussing the OpenGL graphics library itself, we should take a minute to con-
sider exactly how pixels drawn with OpenGL appear on the display. The rest of this
chapter has discussed the intricate View framework that Android uses to organize and
represent objects on the screen. OpenGL is a language in which an application describes
an entire scene that will be rendered by an engine that is not only outside the JVM, but
possibly running on another processor altogether (the Graphics Processing Unit, or
GPU). Coordinating the two processors’ views of the screen is tricky.

The SurfaceView, discussed earlier, is nearly the right thing. Its purpose is to create a
surface on which a thread other than the UI graphics thread can draw. The tool we’d
like is an extension of SurfaceView that has a bit more support for concurrency, com-
bined with support for OpenGL.

It turns out that there is exactly such a tool. All of the demo applications in the Android
SDK distribution that do OpenGL animation depend on the utility class GLSurface
View. Since the demo applications written by the creators of Android use this class,
considering it for other applications seems advisable.

GLSurfaceView defines an interface, GLSurfaceView.Renderer, which dramatically sim-
plifies the otherwise overwhelming complexity of using OpenGL and GLSurfaceView.
GLSurfaceView calls the renderer method getConfigSpec to get its OpenGL configuration
information. Two other methods, sizeChanged and surfaceCreated, are called by the
GLSurfaceView to inform the renderer that its size has changed or that it should prepare
to draw, respectively. Finally, drawFrame, the heart of the interface, is called to render
a new OpenGL frame.

Example 12-16 shows the important methods from the implementation of an OpenGL
renderer.

Example 12-16. Frame-by-frame animation with OpenGL

// ... some state set up in the constructor

@Override
public void surfaceCreated(GL10 gl) {
 // set up the surface
 gl.glDisable(GL10.GL_DITHER);

 gl.glHint(
 GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_FASTEST);

 gl.glClearColor(0.4f, 0.2f, 0.2f, 0.5f);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);

 // fetch the checker-board
 initImage(gl);

Bling | 253

}

@Override
public void drawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 // apply the checker-board to the shape
 gl.glActiveTexture(GL10.GL_TEXTURE0);

 gl.glTexEnvx(
 GL10.GL_TEXTURE_ENV,
 GL10.GL_TEXTURE_ENV_MODE,
 GL10.GL_MODULATE);
 gl.glTexParameterx(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_WRAP_S,
 GL10.GL_REPEAT);
 gl.glTexParameterx(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_WRAP_T,
 GL10.GL_REPEAT);

 // animation
 int t = (int) (SystemClock.uptimeMillis() % (10 * 1000L));
 gl.glTranslatef(6.0f - (0.0013f * t), 0, 0);

 // draw
 gl.glFrontFace(GL10.GL_CCW);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuf);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuf);
 gl.glDrawElements(
 GL10.GL_TRIANGLE_STRIP,
 5,
 GL10.GL_UNSIGNED_SHORT, indexBuf);
}

private void initImage(GL10 gl) {
 int[] textures = new int[1];
 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexParameterf(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MIN_FILTER,
 GL10.GL_NEAREST);
 gl.glTexParameterf(

254 | Chapter 12: Drawing 2D and 3D Graphics

 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MAG_FILTER,
 GL10.GL_LINEAR);
 gl.glTexParameterf(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_WRAP_S,
 GL10.GL_CLAMP_TO_EDGE);
 gl.glTexParameterf(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_WRAP_T,
 GL10.GL_CLAMP_TO_EDGE);
 gl.glTexEnvf(
 GL10.GL_TEXTURE_ENV,
 GL10.GL_TEXTURE_ENV_MODE,
 GL10.GL_REPLACE);

 InputStream in
 = context.getResources().openRawResource(R.drawable.cb);
 Bitmap image;
 try { image = BitmapFactory.decodeStream(in); }
 finally {
 try { in.close(); } catch(IOException e) { }
 }

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, image, 0);

 image.recycle();
}

The surfaceCreated method prepares the scene. It sets several OpenGL attributes that
need to be initialized only when the widget gets a new drawing surface. In addition, it
calls initImage, which reads in a bitmap resource and stores it as a 2D texture. Finally,
when drawFrame is called, everything is ready for drawing. The texture is applied to a
plane whose vertices were set up in vertexBuf by the constructor, the animation phase
is chosen, and the scene is redrawn.

Bling | 255

CHAPTER 13

Inter-Process Communication

Android is designed to host a variety of applications and to maximize user choice. The
platform is intended to eliminate the duplication of functionality in different applica-
tions, to allow functionality to be discovered and invoked on the fly, and to let users
replace applications with others that offer similar functionality. Applications must have
as few dependencies as possible, and must be able to contract out operations to other
applications that may change at the user’s discretion.

Inter-process communication (IPC) is thus the basis of key features of the Android
programming model. The techniques we’ll look at in this chapter are:

Intents
These enable an application to select an Activity based on the action you want to
invoke and the data on which they operate. In other words, you don’t need a hard-
coded path to an application to use its functions and exchange data with it. Data
can be passed in both directions using Intent objects, and this enables a convenient,
high-level system of inter-process communication.

Remote methods
This feature resembles the remote procedure calls (RPCs) offered by other systems:
it makes APIs accessible remotely. Remote objects allow you to make method calls
that look “local” but are executed in another process. They involve the use of
Android’s interface definition language (AIDL).

In this chapter, we will see how these features work and how they can be used in
applications.

Android applications could avoid inter-process communication and provide functions
in packages loaded by the applications that need them. If applications had to exchange
data, they could use the filesystem or other traditional Unix/Linux IPC mechanisms
(sockets, shared memory, etc.). But these practices are error prone and hard to main-
tain. In particular, some of the problems include:

257

• Libraries are difficult to share among multiple Java processes. Java was designed
to have threads, not processes, share common code resources.

• Sharing address space easily leads to errors and inappropriate access to private data.

Consequently, modern programming environments have moved on to more robust
component-like systems. Intents and remote methods fit the bill excellently for
Android.

Intents: Simple, Low-Overhead IPC
The Android system uses Intent objects to enable applications to specify an Activity
or Service. Intent objects also deliver data from one application to another, providing
a simple and convenient form of IPC.

The Intent class, the Activity class, and Android’s Intent-based inter-process commu-
nication solve one of the user interface problems of smartphone platforms that support
multiple separate applications: they feel like a collection of separate programs. You
don’t have the simplicity of navigating a hierarchical user interface, as in simpler feature
phones, and you don’t have multiple windows, as on a PC user interface. The way
Activities work together on Android makes it possible to make a seamless user interface
out of multiple applications, and inter-process communication can enhance coopera-
tion among applications.

Intent Objects Used in Inter-Process Communication
We’ll start with how the client makes a request. Several classes are involved:

Activity and Context
We’ve seen Activity objects used throughout this book. The Context class, a parent
class of Activity and Service, contains the methods for sending Intent objects
from one Activity object to another, whether in the same process or a different
one. So every place you have an Activity subclass— which is nearly every place in
your application that needs to display a UI—you have the methods for slinging
Intent objects around to other Activity instances elsewhere in the Android system.

Intent
Intent objects are passed from process to process, using methods such as
startActivity and startActivityForResult.

The Intent class itself provides constructors, accessors, and other utilities for han-
dling the content of an Intent object, but no methods for moving Intent objects.

An important set of accessors are those named putExtra. Several methods with this
name and different arguments—hence different signatures—let you attach “extra”
data to an Intent. This data can be used for general-purpose inter-process com-
munication. The first examples in this chapter will use this kind of simple inter-
process communication.

258 | Chapter 13: Inter-Process Communication

Activity Objects and Navigating the User Interface Hierarchy
Most mobile handset user interfaces consist of a linked web, or hierarchy, of
“screens”—user interface views that occupy the whole screen, except for areas where
titles and indicator icons are displayed and where soft-key labels (if any) are displayed.
Usually, these hierarchies are implemented by a single program that manages a “stack”
of screens backward from the current screen (and sometimes forward, as well, as in an
iPod-like UI). Intent and Activity objects work together, using inter-process commu-
nication, to link different parts of different applications’ user interfaces into a coherent
user experience with navigation that is unified and seamless when moving between
applications. In this section we’ll show how UI navigation and inter-process commu-
nication go hand-in-hand.

Example: An Intent to Pick How We Say “Hello World”
Almost everyone writes “Hello World” programs. So there is a nearly universal need
to augment these programs and prevent them from getting dull by providing a choice
of greetings. That is what Example 13-1 does.

Example 13-1. An Intent that chooses alternate “Hello World” strings

package example.sayhello;

import example.sayhello.R;

import android.os.Bundle;
import android.app.Activity;
import android.content.Intent;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

/**
 * An activity returning a result
 */
public class SayHello extends Activity
{
 protected void onCreate(Bundle savedInstanceState)
 {
 // Call the parent class
 super.onCreate(savedInstanceState);

 // Put up the view for acquiring some input from the user
 setContentView(R.layout.main);

 // Set up the listeners for the buttons
 ((Button)findViewById(R.id.hello)).setOnClickListener(helloListener);
 ((Button)findViewById(R.id.goaway)).setOnClickListener(goAwayListener);
 }

Intents: Simple, Low-Overhead IPC | 259

 private OnClickListener helloListener = new OnClickListener()
 {
 public void onClick(View v)
 {
 returnResult("Hello, other Android!");
 }
 };

 private OnClickListener goAwayListener = new OnClickListener()
 {
 public void onClick(View v)
 {
 returnResult("Get off my lawn, damn kids!");
 }
 };

 // Put a result in an Intent object and set the result for this activity
 void returnResult(String greeting) {

 // Create the Intent object
 Intent i = new Intent();

 // Put an extra named "result" in the intent
 i.putextra("result", greeting);

 // Make this Intent the result for this activity
 setResult(RESULT_OK, i);

 // End this activity
 finish();
 }
}

Example 13-2 shows the layout file that specifies the user interface provided by this
activity.

Example 13-2. Resource for alternate “Hello World” strings

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:padding="4dip"
 android:gravity="center_horizontal"
 android:layout_width="fill_parent" android:layout_height="fill_parent">

 <TextView
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_weight="0"
 android:paddingBottom="8dip"
 android:text="Say hello, or not"/>

 <Button android:id="@+id/hello"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:text="Hello">
 <requestFocus />
 </Button>

260 | Chapter 13: Inter-Process Communication

 <Button android:id="@+id/goaway"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:text="Go away">
 </Button>

</LinearLayout>

Figure 13-1. Output of simple “Hello World” program

This layout describes a screen with two buttons. The listeners for these buttons are
called HelloListener and GoAwayListener. In the Java code in Example 13-1, the listener
methods call returnResult, passing the string that will be returned.

You can try this program as a standalone application. Create a new Android project
with the package named example.sayhello and an activity named SayHello. Use Ex-
ample 13-1 for the SayHello class and Example 13-2 for the main.xml layout file. When
run, the application will display Figure 13-1.

When you click on or press one of the buttons, the program finishes and disappears
from the screen. It also creates an Intent object used as a “result” for the activity.

Intents: Simple, Low-Overhead IPC | 261

Let’s take a closer look at how it does that. You may want to run the program under
the debugger and set a breakpoint on the first line of the returnResult method, where
we create an Intent object, and follow along using the “step over” command in the
debugger.

First, an Intent object is created. This is what gets moved from this process to the
process that started this Activity:

// Create the Intent object
Intent i = new Intent();

Here we will see how Intent objects facilitate inter-process communications: you can
label and associate several types of data with an Intent object and send these “stow-
aways” with the object from one process to another. Here we call putExtra to add data
to the Intent. Its first argument is a String that labels the data; here we use “result” as
the label. The second argument, the actual payload, can be any data type supported by
the different putExtra methods (which differ in the arguments they take); in our simple
example, we use a String for the payload as well:

// Put an extra named "result" in the intent
i.putExtra("result", greeting);

The returnResult method “returns” the result, not to the method that calls this method,
but through an Intent object to the code that started this instance of SayHello. The
following line sets the result:

// Make this Intent the result for this activity
setResult(RESULT_OK, i);

In this example, however, nothing happens to our result. Nobody expects it, and no-
body uses it. Next we will change that, and see how one application can use a result
produced by another.

Getting a Result via Inter-Process Communication
This section modifies the “Hello World” application from an earlier chapter to show
how Android can make separate Activity objects in separate programs seem of-a-piece.
This version uses one Activity to enable the user to choose which greeting to put on
the screen in another Activity. A copy of the data put into the Intent object in the
previous section ends up in an Intent object in the HelloWorldActivity Activity.

To enable a client to find the Intent, the server assigns it a label called an action. In this
case, we’ll call our action PICK, shown here in Example 13-3.

Example 13-3. HelloWorldActivity.java

package example.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

262 | Chapter 13: Inter-Process Communication

import android.widget.TextView;

public class HelloWorldActivity extends Activity {
 TextView helloView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Make a text view and set it to be the content view
 helloView = new TextView(this);
 setContentView(helloView);

 // Make an Intent instance to fill in
 Intent helloIntent = new Intent();

 // Set the action, and type
 helloIntent.setAction("android.intent.action.PICK");
 helloIntent.setType("vnd.example.greeting/vnd.example.greeting-text");

 // Ask an activity that matches our Intent object
 startActivityForResult(helloIntent, 0);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent result)
 {
 if (resultCode == RESULT_OK) {
 String greeting = result.getStringExtra("result");

 helloView.setText(greeting);
 }
 }
}

The changes we made will start an Activity in a separate application and a separate
process to provide the user interface for selecting a greeting. After that greeting is re-
turned by the other Activity, this one uses it to say hello.

Run the program. You will see the user interface presented by the SayHello program,
just as in Figure 13-1. But this time, when you press one of the two buttons, the screen
will display the greeting you selected (Figure 13-2).

Let’s take a closer look at how it’s done. Here, again, you may want to follow along
using the debugger.

Did you run the SayHello program yet? You need to do that before
you run our modified HelloWorldActivity program. The Android emu-
lator installs programs the first time you run them, so once you run
SayHello it will stay around as long as the emulator is running. But if
the program hasn’t been run yet, the startActivityForResult call in the
current example will fail, because Android cannot find SayHello.

Intents: Simple, Low-Overhead IPC | 263

First, we need to start our helper application, which we do using an Intent object:

// Make an Intent instance to fill in
Intent helloIntent = new Intent();

Then, we need to specify an Activity that is neither a part of our application nor part
of an Activity in any of the programs that come with Android:

// Set the action, and type
helloIntent.setAction("android.intent.action.PICK");
helloIntent.setType("vnd.example.greeting/vnd.example.greeting-text");

The setType method requires a MIME type. We will use a vendor-specific MIME type
unique to our purpose (by vendor here, I mean us). As a result, our SayHello activity is
launched because it has an Intent filter that matches the parameters we have set in this
Intent object.

Now we call the startActivityForResult method, passing the Intent object we created
to hold the information that tells the Android framework to find an Activity matching
the specifications in our Intent: the PICK action and the requested MIME type. We don’t

Figure 13-2. Output of “Hello World” program after user selection

264 | Chapter 13: Inter-Process Communication

explicitly request the SayHello Activity—we might want to replace it with something
else at some point—but for now, that activity is what Android will find:

// Ask an activity that matches our Intent object
startActivityForResult(helloIntent, 0);

The startActivityForResult method navigates to a UI that obtains information and
returns it. This is a good illustration of using IPC for a task that could otherwise have
required redundant code in all applications that need similar information.

Now SayHello should run and display its user interface for selecting a greeting. When
you have selected a greeting and the setResult method is called, Android’s inter-process
communication system will move the result to this process, and the OnActivityResult
method will be called. We’ve defined it as follows:

protected void onActivityResult(int requestCode, int resultCode, Intent result) {
 if (resultCode == RESULT_OK) {
 String greeting = result.getStringExtra("result");

 helloView.setText(greeting);
 }

The method calls getStringExtra to access the greeting we have chosen. It uses the
setText method of the TextView class to display our selected greeting.

To summarize, in this example one program (SayHello) acquires some information and
supplies it to another program (HelloWorldActivity). We have successfully used inter-
process communication.

Android includes a component system based on remote objects and methods, which
we’ll examine in the next section. This is a powerful feature with many uses, but remote
method calls are overkill in many cases. As you design your programs, first consider
whether your inter-process communications needs fit what Intents and the Context
class’s Intent-related methods can do. Particularly when you’re using inter-process
communication to provide a user interface in an Activity, this high-level form of IPC is
easy to use and appropriate to the task.

Remote Methods and AIDL
This section describes how one program can provide other programs with access to its
methods. A number of important Android APIs use this feature. For instance, the
TelephonyManager introduced in Chapter 15 uses a remote object interface in order to
manage and share the phone hardware in an Android device.

There are three steps to creating and using remote methods in Android:

1. Define the interface in the AIDL.

2. Implement the interface. That is, write methods that match the signatures in the
interface and that perform the operations you want in the program that provides
the desired services.

Remote Methods and AIDL | 265

3. Invoke the methods where you want to use them.

Android Interface Definition Language
To communicate from one process to another, data stored in memory has to be moved
across process boundaries. That means the data has to be “marshalled”—packaged for
transport—and “unmarshalled”—put into the right member variables after the data
has been moved across the process boundary. (Some Android documentation uses the
word “flattened,” with the connotation of taking a data stored in several objects and
turning it into a “flat” array of bytes that can be sent between processes.)

Java’s basic types, such as String, are easy to marshall, but complex types, such as
multidimensional arrays, are much harder. Marshalling data spread in an object that
holds references to other objects requires following every reference and marshalling all
the data that it references.

Usually, marshalling and unmarshalling is performed on the parameters in a remote
method call, to let you pass data from one application to another and return results.

Marshalling and unmarshalling data is tedious, and you would find it hard to under-
stand code that had to carry out the task every place it uses inter-process communica-
tion. Therefore, most implementations of remote objects or components use an
interface definition language that generates calls to marshalling methods. The syntax
of the interface definition language resembles the main language in use (Java in this
case), so that a remote procedure call closely resembles a normal method call. However,
the interface definition language really is a separate language.

AIDL syntax is identical to Java interface definition syntax, except that in AIDL you
can label the parameters for remote method calls as in, out, or inout. Any parameter
labeled in will be transferred to the remote method, whereas any parameter labeled
out will be returned to the caller from the remote method. In the example, from the
ApiDemos application we use here, the keywords indicating in and out parameters are
not used. The defaults apply: all parameters are in, the return value is used for returning
data from the remote method, and any parameter labeled inout will transfer data to the
remote method and refer to a value transferred from the remote method when it returns.
In the example, the AIDL code is therefore completely compatible, in syntax, to Java
code.

When you save your AIDL file in Eclipse, the Android Eclipse plug-in compiles it. Both
the calling and implementing side of a remote method interface share the information
in the AIDL file.

For the examples in this section, we’re excerpting code from the ISecondary.aidl file in
the ApiDemos application.

This is how you specify an interface to a remote object:

interface ISecondary {
 /**

266 | Chapter 13: Inter-Process Communication

 * Request the PID of this service, to do evil things with it.
 */
 int getPid();

 /**
 * This demonstrates the basic types that you can use as parameters
 * and return values in AIDL.
 */
 void basicTypes(int anInt, long aLong, boolean aBoolean, float aFloat,
 double aDouble, String aString);
}

This looks like Java code, but it isn’t. It looks like an interface definition. There are two
method signatures, and no implementation of the methods. That is all AIDL needs to
create code that moves the parameters between applications. Next we will take a look
at the code generated by AIDL to see exactly how the parameters are moved from one
process to another, and to see how to implement the API defined in this AIDL definition.

The Android SDK plug-in for Eclipse automatically compiles this code to Java, resulting
in the following set of Java definitions. Normally this code is not formatted for reada-
bility, so what you see here looks different from the file you see in the ApiDemos project
in your Eclipse IDE. But it is the same Java code:

package com.example.android.apis.app;

import java.lang.String;
import android.os.RemoteException;
import android.os.IBinder;
import android.os.IInterface;
import android.os.Binder;
import android.os.Parcel;

/**
 * Example of a secondary interface associated with a service. (Note that
 * the interface itself doesn't impact, it is just a matter of how you
 * retrieve it from the service.)
 */
public interface ISecondary extends android.os.IInterface {

 /** Local-side IPC implementation stub class. */
 public static abstract class Stub extends android.os.Binder
 implements com.example.android.apis.app.ISecondary {

 private static final java.lang.String DESCRIPTOR =
 "com.example.android.apis.app.ISecondary";

 /** Construct the stub at attach it to the interface. */
 public Stub() {
 this.attachInterface(this, DESCRIPTOR);
 }

 /**
 * Cast an IBinder object into an ISecondary interface,
 * generating a proxy if needed.

Remote Methods and AIDL | 267

 */
 public static
 com.example.android.apis.app.ISecondary asInterface(android.os.IBinder obj) {
 if ((obj == null)) {
 return null;
 }
 android.os.IInterface iin =
 (android.os.IInterface) obj.queryLocalInterface(DESCRIPTOR);
 if (((iin != null) &&
 (iin instanceof com.example.android.apis.app.ISecondary))) {
 return ((com.example.android.apis.app.ISecondary) iin);
 }
 return new com.example.android.apis.app.ISecondary.Stub.Proxy(obj);
 }

 public android.os.IBinder asBinder() {
 return this;
 }

 public boolean onTransact(int code, android.os.Parcel data, android.os.Parcel
 reply,
 int flags) throws android.os.RemoteException {
 switch (code) {
 case INTERFACE_TRANSACTION: {
 reply.writeString(DESCRIPTOR);
 return true;
 }
 case TRANSACTION_getPid: {
 data.enforceInterface(DESCRIPTOR);
 int _result = this.getPid();
 reply.writeNoException();
 reply.writeInt(_result);
 return true;
 }
 case TRANSACTION_basicTypes: {
 data.enforceInterface(DESCRIPTOR);
 int _arg0;
 _arg0 = data.readInt();
 long _arg1;
 _arg1 = data.readLong();
 boolean _arg2;
 _arg2 = (0 != data.readInt());
 float _arg3;
 _arg3 = data.readFloat();
 double _arg4;
 _arg4 = data.readDouble();
 java.lang.String _arg5;
 _arg5 = data.readString();
 this.basicTypes(_arg0, _arg1, _arg2, _arg3, _arg4, _arg5);
 reply.writeNoException();
 return true;
 }
 }
 return super.onTransact(code, data, reply, flags);
 }

268 | Chapter 13: Inter-Process Communication

 private static class Proxy implements
 com.example.android.apis.app.ISecondary {

 private android.os.IBinder mRemote;

 Proxy(android.os.IBinder remote) {
 mRemote = remote;
 }

 public android.os.IBinder asBinder() {
 return mRemote;
 }

 public java.lang.String getInterfaceDescriptor() {
 return DESCRIPTOR;
 }

 /**
 * Request the PID of this service, to do evil things with it.
 */
 public int getPid() throws android.os.RemoteException {
 android.os.Parcel _data = android.os.Parcel.obtain();
 android.os.Parcel _reply = android.os.Parcel.obtain();
 int _result;
 try {
 _data.writeInterfaceToken(DESCRIPTOR);
 mRemote.transact(Stub.TRANSACTION_getPid, _data, _reply, 0);
 _reply.readException();
 _result = _reply.readInt();
 } finally {
 _reply.recycle();
 _data.recycle();
 }
 return _result;
 }

 /**
 * This demonstrates the basic types that you can use as parameters
 * and return values in AIDL.
 */
 public void basicTypes(int anInt, long aLong, boolean aBoolean,
 float aFloat,
 double aDouble, java.lang.String aString)
 throws android.os.RemoteException {
 android.os.Parcel _data = android.os.Parcel.obtain();
 android.os.Parcel _reply = android.os.Parcel.obtain();
 try {
 _data.writeInterfaceToken(DESCRIPTOR);
 _data.writeInt(anInt);
 _data.writeLong(aLong);
 _data.writeInt(((aBoolean) ? (1) : (0)));
 _data.writeFloat(aFloat);
 _data.writeDouble(aDouble);
 _data.writeString(aString);

Remote Methods and AIDL | 269

 mRemote.transact(Stub.TRANSACTION_basicTypes, _data, _reply, 0);
 _reply.readException();
 } finally {
 _reply.recycle();
 _data.recycle();
 }
 }
 }
 static final int TRANSACTION_getPid = (IBinder.FIRST_CALL_TRANSACTION + 0);
 static final int TRANSACTION_basicTypes = (IBinder.FIRST_CALL_TRANSACTION
 + 1);
 }

 /**
 * Request the PID of this service, to do evil things with it.
 */
 public int getPid() throws android.os.RemoteException;

 /**
 * This demonstrates the basic types that you can use as parameters
 * and return values in AIDL.
 */
 public void basicTypes(int anInt, long aLong, boolean aBoolean, float aFloat,
 double aDouble, java.lang.String aString) throws android.os.RemoteException;
}

That’s a lot of code! Now you can appreciate the value of AIDL instead of building a
remote object interface by hand. After we see what is going on inside the
AIDL-generated code, we will take a look at the other two steps to creating and using
a remote object interface: implementing the methods and invoking them.

Classes Underlying AIDL-Generated Interfaces
Now let’s take a look at the android.os.IInterface class. It’s a base type on which all
the interfaces created by AIDL are built, so they can be referenced through references
of the same type. ISecondary extends IInterface.

Most of the code in the ISecondary interface is part of the definition of an abstract class
called Stub. You implement remote methods by extending the Stub class. Every remote
interface has this class, but because it is inside the interface created by AIDL particular
to your remote methods, there is no name conflict.

The word “stub” was chosen to refer to this class because remote method systems work
by creating a method on the client with the same name as the method that runs on the
server. The client method is considered a “stub” because it doesn’t actually carry out
the operation requested; it just marshalls the data, sends it to the server, and unmar-
shalls the return value. We’ll show some details later in this chapter.

270 | Chapter 13: Inter-Process Communication

Implementing the Stub interface

So how do you write the code that actually implements these remote method calls? In
this case, the implementation is in the class RemoteService of the ApiDemos application,
and the following excerpt shows the method definitions. The first line extends the
abstract class and makes a new instance of it:

private final ISecondary.Stub mSecondaryBinder = new ISecondary.Stub() {
 public int getPid() {
 return Process.myPid();
 }
 public void basicTypes(int anInt, long aLong, boolean aBoolean,
 float aFloat, double aDouble, String aString) {
 }
};

This is all you need to do to turn a method in your application into a remote method.
The rest of the work of invoking the method in the other application, passing the pa-
rameters, and responding with a return value from the remote method is performed by
code generated by AIDL in the Stub abstract class.

So, for a remote interface generated by AIDL, the code takes the abstract Stub class and
implements the method code that will actually be used. But how does data from another
process get to these methods? That is where the onTransact method comes in.

The onTransact method (see the AIDL-generated code shown earlier) is called when
data in a Parcel object is delivered to a remote interface in an Android program. This
method is generated by AIDL for each remote interface. In this case, it reads each
argument to the method from a Parcel object, makes the method call, and writes the
result to another Parcel object used for the return value of a remote method.

Parcel objects are what Java applications in Android pass to the Android IPC mecha-
nism for moving between processes. In the simple IPC example earlier in this chapter,
underlying the Context method calls used to move Intent objects between applications,
the Intent object and the “extras” data associated with it are marshalled, or “flattened,”
into a Parcel object to be moved from one process to another and reconstituted into
an Intent object with the same extras in the other process.

Basic types such as long and int are marshalled and unmarshalled by methods in the
Parcel class. Other classes in the Android base classes, such as Intent and String,
implement the Parcelable interface. As the name suggests, this provides an interface for
the Parcel class to marshall those objects. And on top of that, implementing the
Parcelable interface in your classes enables them to be marshalled, unmarshalled, and
moved from one application to another.

Getting an instance of the remote Proxy object

There is one more part to this story: how does a different application find out about
the interface called ISecondary, and how does the caller of the remote method actually
call these methods? The answer is in the asInterface method of the Stub class, and the

Remote Methods and AIDL | 271

Proxy class nested within Stub. And that means that any application that wants to make
a remote method call must share the interface definition with the application that im-
plements the interface. In practical terms, that means that the calling application and
the application that implements the remote interface have to be compiled with the same
AIDL files.

Now let’s take a look at how the remote interface gets called. In the ApiDemos code
we are using as an example here, this happens in the RemoteServiceBinding class, where
the asInterface method is called:

mSecondaryService =
 ISecondary.Stub.asInterface(service);

The parameter named service here is a reference to an IBinder interface. The Binder
abstract class implements IBinder, and the Stub class (the guts of what AIDL has gen-
erated) extends Binder. Let’s see how this parameter is used in the asInterface method:

public static com.example.android.apis.app.ISecondary asInterface(android.os.IBinder
 obj) {
 if ((obj == null)) {
 return null;
 }
 android.os.IInterface iin = (android.os.IInterface)
 obj.queryLocalInterface(DESCRIPTOR);
 if (((iin != null) && (iin instanceof com.example.android.apis.app.ISecondary))) {
 return ((com.example.android.apis.app.ISecondary) iin);
 }
 return new com.example.android.apis.app.ISecondary.Stub.Proxy(obj);
}

Here the parameter is named obj, and first it is tested to see whether it is null. Then,
asInterface checks to see whether there is an instance of ISecondary with the correct
name. What that means is that the “remote” interface we were looking for is actually
in the same application as the code calling it. And that means no inter-process com-
munication is necessary. Otherwise, if it isn’t a local interface, an instance of the
Proxy object is created. Remember that this code is executing in the context of the
application that wants to call the remote interface.

The Proxy class is the counterpart of the Stub abstract class. It may seem a little mind-
bending that the Proxy class, which implements ISecondary, is defined inside the
Stub class, which is itself inside the ISecondary interface, but it turns out to be con-
venient. Otherwise, more class files would have to be created by AIDL, and somehow
uses of those classes managed.

Looking inside the Proxy class, we see that it has methods that have the same signature
as the remote methods defined in the AIDL file. Here, unlike in the abstract class
Stub, the methods are implemented, and the implementations create Parcel objects and
fill them with the “flattened” parameters in exactly the right order for the onTransact
method to “unflatten” them and call the remote methods.

272 | Chapter 13: Inter-Process Communication

That means an application calls a remote method by getting an instance of the Proxy
class and calling the remote methods as if they were local. You can see this here, ex-
cerpted from the RemoteServiceBinding class:

int pid = mSecondaryService.getPid();

Recall that mSecondaryService is returned from the ISecondary.Stub.asInterface
method. Because the caller gets a Proxy object and the remote methods are implemented
in a Stub object, and because both Proxy and Stub implement ISecondary, it all looks
like a local method call, but the implementations of the methods are completely dif-
ferent in the calling application and the application that implements the remote
methods.

To review:

• You define remote interfaces in AIDL. They look like Java interfaces, but are not.

• AIDL turns your remote interface definition into a Java interface with Stub and
Proxy classes nested inside.

• Both the application that calls the remote method and the application that imple-
ments it use the same AIDL file and the same generated interface.

The application calling the remote interface gets an instance of the Proxy class that
implements the very same interface it is defined inside of. The instance also implements
“proxy” methods with the same signature as the remote methods, but they package up
their parameters into a Parcel object and send them off to the application that imple-
ments the remote methods and unpackages and returns the results.

In the remote application, a concrete class extending Stub has implementations of the
remote methods. The onTransact method “unflattens” data in a Parcel object, calls the
remote methods and “flattens” the result, writes it into a Parcel, and sends that
Parcel object back to the calling application.

However, if both the calling application and the remote service are not, in fact, remote
from one another, an instance of the concrete class that implements the not-so-remote
methods is used instead, cutting out the inter-process communication if it is not needed.

Publishing an Interface
The server publishes an interface to make it possible for other activities to find it. Pub-
lishing is accomplished by overriding the onBind method of the Service class (described
in “Android Service Lifecycle” on page 10).

A client calls the bindService method of the Context class, causing a call to the server’s
onBind method. The bindService and onBind methods are the “handshake” required to
start using a remote interface in a specific Service object in a specific process running
in the Android environment. Here is the example of an onBind implementation from
the the class RemoteService in the ApiDemos application:

Remote Methods and AIDL | 273

@Override
public IBinder onBind(Intent intent) {
 // Select the interface to return. If your service only implements
 // a single interface, you can just return it here without checking
 // the Intent.
 if (IRemoteService.class.getName().equals(intent.getAction())) {
 return mBinder;
 }
 if (ISecondary.class.getName().equals(intent.getAction())) {
 return mSecondaryBinder;
 }
 return null;
}

mBinder and mSecondaryBinder refer to objects implementing the Stub interface. You
will see the implementation of mSecondaryBinder in the next section, where implemen-
tation of the Stub interface is explained. Let’s take a look at this method in detail. First,
the interface requested depends on matching the name of the interface, which is passed
in the action parameter of the Intent object:

 if
(IRemoteService.class.getName().equals(intent.getAction())) {
 return mBinder;
 }

In the client application looking for this interface, the contents of the Intent object
were specified in a call to the bindService method of the Context class. That means that
a program publishing a remote method interface must be a subclass of Service. But a
program using a remote method interface can be any subclass of Context, including
Activity and Service.

The Intent object is used to specify the interface. The class name of the interface is the
action parameter of the Intent.

If the interface matches, the onBind method returns an IBinder instance, an instance of
the Stub interface in the remote interface.

Android IPC Compared with Java Native Interface (JNI)
Remote procedure calls (RPC) using Android’s inter-process communications largely
replace the use of the Java Native Interface (JNI) in Android. In almost all cases, a
remote procedure call is efficient enough to make it a superior alternative to loading a
library—especially one that dynamically allocates a significant amount of memory—
into the Java virtual machine’s address space. And if a process exposing an RPC inter-
face fails, it is less likely to bring down the Android UI with it.

Android inter-process communication behaves a lot like JNI: the caller’s thread is
blocked until the result is returned. Marshalling data across the IPC boundary is about
the same amount of work as data conversions in JNI. But Binder-based remote proce-
dure calls have a significant advantage over JNI: if non-Java code crashes or runs out

274 | Chapter 13: Inter-Process Communication

of memory, the caller of a remote procedure call gets an error that must be handled,
but the Java application does not crash. Remote procedure calls are a more robust way
to call “external” libraries and subject the Java application to fewer risks in the form of
clashing memory management strategies and other differences between Java applica-
tions and libraries implemented in languages other than Java.

What Binder Doesn’t Do
There are at least three things Binder doesn’t do, compared with other systems capable
of providing similar functionality:

• Binder does not manage version information.

• Binder does not traverse networks.

• It does not enable applications to discover interfaces.

Some inter-process communications systems enable the two sides of an inter-process
API to negotiate version compatibility. Binder, along with the higher-level mechanisms
built on Binder, does not do this. This means APIs built on Binder should remain com-
patible with older versions if the APIs are open for other applications to use, and it
means that consumers of remote APIs should be resilient to failures caused by incom-
patibilities. Make sure to handle those exceptions!

Binder-based inter-process communication is also limited to a single node: it won’t take
you across the network to other Android systems. This is a limitation, to be sure, but
it is appropriate to a mobile handset, where endpoint-to-endpoint data connections are
rarely used and often blocked by the routing in a mobile data network.

Binder and Linux
Binder is not a widely used IPC mechanism in Linux. D-BUS is the most widely used
IPC mechanism, and has become commonly used in both server and desktop Linux
distributions and in numerous applications and daemons. In contrast, Binder was de-
veloped by Palm, abandoned, open-sourced as OpenBinder, and subsequently adopted
by Google for Android.

Binder may not be the choice of most other Linux distributions, but it isn’t a bad choice:
Binder is used throughout Android, including performance-critical parts of Android,
such as the Surface Flinger, Android’s system for sharing the screen among multiple
processes. Binder is simple and performant. It is also an example of the ways in which
Android diverges from the typical use of Linux in mobile handsets and other small
devices.

Android is not a shrunken desktop Linux. The use of Binder, the way Linux user IDs
are used to “sandbox” applications, the unique 2D graphics library, and other design
decisions are all in the service of making Android an ideal platform for running Android
applications. It is debatable whether every design decision that diverges from standards

Remote Methods and AIDL | 275

was worth it, and developers who have started porting and extending Android actively
debate these issues, but some things are certain:

• Android performs well. None of the unique design decisions that went into An-
droid were to the detriment of performance. Android performance is good enough
to allow multitasking—something Apple abjures in iPhone so as not to risk the
multimedia user experience.

• Android is not attempting to set a general direction for Linux, or even for embedded
Linux. Android has, of course, charted a radically different course for application
development. Android is consciously different and optimized for a range of smart-
phone hardware: big and powerful enough to run a browser, but not encroaching
on the laptop format enough to need a multiwindow user interface. Android, as a
whole, is meant to be just right for its intended purpose.

276 | Chapter 13: Inter-Process Communication

CHAPTER 14

Simple Phone Calls

Android provides the user with several ways of starting phone calls: from the contact
list, from the call history, using a dialer that displays a 12-key dialpad on the screen,
etc. All of these software modules use the same application to start a phone call. Your
program can initiate a phone call in the same way: by using an Intent object to ask
Android’s specialized telephony application to make the call. We’ll cover that techni-
que in this chapter, and take a look behind the scenes at how the process works.

In Chapter 15, we’ll introduce Android classes that give you more information about
telephony, such as tracking the state of the call you made.

Quick and Easy Phone Calls
Android includes an application called PhoneApp that embodies the functions of a
mobile phone. Through the use of Intent objects, Android enables applications to tell
other applications to perform certain operations, such as initiating a phone call. To
enable your application to initiate a phone call, a method like the one in Exam-
ple 14-1 will do the job.

Example 14-1. How to make a phone call

private void call() {
 try {
 Intent callIntent = new Intent(Intent.ACTION_CALL);
 callIntent.setData(Uri.parse("tel:9785551212"));
 startActivity(callIntent);
 } catch (ActivityNotFoundException activityException) {
 Log.e("dialing-example", "Call failed", activityException);
 }
}

What happens when you start a phone call depends, in part, on the telephone network.
The number may be incorrect. The network may be busy or otherwise unavailable. The
call can be interrupted. Here, however, you see no error-handling logic, except for
catching and logging exceptions that can be thrown if Android’s system encounters a

277

problem when finding applications that can process Intent objects. Instead, the
PhoneApp application, which already has code for interpreting and remediating errors,
handles the job from the time the phone call is started.

When an application just wants to start phone calls, making it handle all these con-
tingencies is a large burden. Systems that provide a telephony API place that burden
on application authors when, in most cases, all an application needs is to start a phone
call—not to manage the lifecycle of a phone call.

Starting a phone call is a multistep operation. Here we’ll take a detailed look at each
step in the execution of the call method shown in Example 14-1. Along the way, we’ll
see how it uses Android’s system of Intent objects and Intent filters.

Creating an Example Application to Run the call Method
To test the method in Example 14-1, create a new Android project in Eclipse by selecting
File → New → Project → Other.... When the “Select a Wizard” dialog appears, select
Android → Android Project. When you see the new project dialog, fill it in as shown in
Figure 14-1.

Press Finish to create a project named dialing-example in your Eclipse workspace. (The
complete code for this example is also on the book’s website.) You will see this project
in the Package Explorer pane of your Eclipse IDE. Expand the project to see a set of
folders, including one named src. Expand this folder to see a package named
example.dialing. Expand that package and you will see two Java source files, one of
which is named dialing.java. This file contains the code in Example 14-2.

Example 14-2. Setting up an application to make phone calls

package example.dialing;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;

public class dialing extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

278 | Chapter 14: Simple Phone Calls

This is where you will put the code that invokes our call method.

Figure 14-1. Creating a phone project in Eclipse

Embedding the Code Snippet in a Simple Application
Now that you have created a simple Android application, you can use it to isolate and
observe operations, such as starting a phone call.

Copy the method we created in “Creating an Example Application to Run the call
Method” on page 278 to the dialing class in the dialing.java file. Then, add a line to
the onCreate method that calls the call method. The results should look something
like Example 14-3.

Quick and Easy Phone Calls | 279

Example 14-3. The dialing class with call method and its invocation

package example.dialing;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;

public class dialing extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 call();
 }

private void call() {
 try {
 Intent callIntent = new Intent(Intent.ACTION_CALL);
 callIntent.setData(Uri.parse("tel:9785551212"));
 startActivity(callIntent);
 } catch (ActivityNotFoundException activityException) {
 Log.e("dialing-example", "Call failed", activityException);
 }
}

Make sure your program compiles and runs. To run the program, select the Run →
Run command. When the Run As dialog appears, select Android Application. If you
have followed the steps in this chapter, the result should be displayed in the Android
emulator window (Figure 14-2).

You can use the red “end” button on the phone depicted in the emulator to let the user
end the simulated phone call.

Exploring the Phone Code Through the Debugger
We will use the Eclipse debugger, set breakpoints, and inspect class members in the
running application to observe what is going on inside this example. The use of the
debugger with Android is described in Chapter 5. If you have not used a debugger
before, don’t worry: we will use a limited set of debugging capabilities here to observe
a program that works correctly. Just follow the steps in this section and let the debugger
show you what is happening.

First, we will set a breakpoint where we want to start observing what is happening
inside the application. To set a breakpoint, double-click on the left margin of the view
that shows the program code in Eclipse. A blue dot will appear. If you change your

280 | Chapter 14: Simple Phone Calls

mind and decide not to insert a breakpoint, double-click again on the blue dot, and it
will disappear.

All we want is to stop execution of the program at the point where we want to start
inspecting what happens to the members of this instance of the dialing class. To do
this, set a breakpoint on line 21 of the program. You can tell which line you are on by
clicking a line in the program. In the status bar at the bottom of the Eclipse window,
you will see two numbers separated by a colon. The first number is the line number
where you just clicked, and the second number is the character position on that line
where the insertion point is right now.

Start the application with the debugger by selecting Run → Debug, and when the
“Debug as” dialog appears, select Android Application.

The program will stop at the breakpoint, after the Android emulator appears on your
screen but before the appearance of the dialer shown in Figure 14-2. Eclipse will switch
to a debug perspective: a set of views configured for debugging a program instead of
editing it. Eclipse will ask if you want to switch perspectives the first time you run the

Figure 14-2. Dialer starts

Exploring the Phone Code Through the Debugger | 281

debugger; you can save your answer if you want Eclipse to do the same thing each time
you start debugging.

In the debug perspective, the view displaying the program code will show a small arrow
overlapping the blue dot in the left margin. This line of code will be highlighted. The
program has stopped before executing the Java bytecodes corresponding to the Java
source code on this line of the program.

Figure 14-3 shows the Eclipse window in debug perspective with contents similar to
those that should appear on your screen. The main information to look for is that the
program stopped executing on the line where you set the breakpoint.

Creating an Instance of an Intent
The line of code where the program stopped in the previous section looks like this:

Intent callIntent = new Intent(Intent.ACTION_CALL);

This creates an instance of the Intent class. Use the “step over” command to execute
this line, by selecting the Run → Step Over option from the menu or any of the shortcuts
available in Eclipse.

Figure 14-3. Eclipse debugger stopped in call method

282 | Chapter 14: Simple Phone Calls

“Step over” does not mean “skip.” Instead, it tells the debugger to run
the entire line of code and all the method calls it contains (the Intent
constructor, in this case) instead of entering the method calls and going
through them line by line. It isn’t useful to see the internals of the Intent
constructor. So “step over” creates the Intent and presents you with the
next line of your own code.

The debugger also has commands for “stepping into” methods and
“stepping out” of the method currently being executed. These com-
mands are more convenient than setting more breakpoints and using
the Resume command.

Now that we have used the new operator and the Intent constructor with an argument
that specifies we want to initialize the Intent with the Intent.ACTION_CALL constant, we
have an instance of the Intent class. The action we use, ACTION_CALL, will enable An-
droid to find PhoneApp or any other program the user may install that offers the
ACTION_CALL action.

Let’s take a look inside by entering the Variables view in Eclipse. You will see two
columns in this view. The first column shows the names of the variables, and the second
column shows their values. In our case, the names refer to instances of classes, and the
values consist of the class name and the ID of the instance.

That’s not very informative! Let’s look inside these instances and see what they contain.
Click on the triangle icon in the left margin next to the variable named callIntent.
Now you see all the members of the Intent class and the values for this instance of the
Intent class. The only member that has a nondefault value is mAction. Its value is the
string "android.intent.action.CALL". This is the result of calling the Intent class’s
constructor with the argument we used.

Adding Data to an Instance of an Intent
So far, our instance of the Intent class has enough information to tell the Android
system we want to start a phone call, but not enough to tell it what number to call.

After creating the Intent instance with the information that means “we want to call a
number,” in the next line we will add to it the number to call:

callIntent.setData(Uri.parse("tel:9785551212"));

Two things happen on this line of code: an instance of a Uri is created, and we use that
instance as an argument to the setData method of the Intent class. Step over this line
of code, and then let’s see what happens to the variables we are inspecting.

Look at the Variable view in Eclipse and you will see that the mData member of this
instance of the Intent now refers to the instance of Uri that was returned from the parse
method of the Uri class. And if you click on the triangle icon next to “mData”, you will
see the members of the Uri class, including the uriString member that refers to the

Exploring the Phone Code Through the Debugger | 283

string tel:9785551212. Now our instance of the Intent class contains all the information
we need to start a phone call.

Why use a URI? All mobile numbers conform to the E.164 standard, so why not use a
String object containing a valid E.164 number? A URI has the advantage of generality.
All parts of Android are replaceable and the components of Android that handle this
particular Intent object could be augmented or replaced by a module that can also
connect VoIP calls with SIP URIs or Gmail addresses.

Initiating a Phone Call
The next line in our program looks like this:

startActivity(callIntent);

This looks like we want to start an Activity, using the Intent object we created. But
why don’t we need to specify an instance, or even a class, when we call
startActivity? Because our program is an instance of the Activity class. We are calling
a method of the class this object is an instance of. We could have used the following
instead:

this.startActivity(callIntent);

Our program is already an Activity, but we now want to start a new instance of the
Activity class—one that can handle the Intent instance we created. The Android
framework handles the call by searching for an Intent that matches our request for
ACTION_CALL. Let’s step over this line and see what happens.

Now the arrow in the left margin of the code view points to the last line of the call
method, just before the method returns. The emulator window shows the Android call
status application displaying the number we specified. It should look like Fig-
ure 14-2, shown earlier in this chapter.

The fact that we stepped over this line of code and can now continue executing our
program means that making a phone call this way is asynchronous: it allows our pro-
gram to continue running while the dialer program makes the phone call.

Android is a collection of applications, and the application you are debugging places
no restrictions on other applications that can be running at the same time.

Exception Handling
What if something goes wrong? The code in the call method that starts the dialer is
wrapped in a try/catch block. The catch statement contains a line of code that logs an
error if the startActivity method throws an exception of the type ActivityNot
FoundException. If a method can throw an exception that indicates an error, the call to
that method should be in a try/catch block that catches that type of exception. In this
case, we use Android’s logging facility to record the error.

284 | Chapter 14: Simple Phone Calls

We do not catch all exceptions, because unexpected exceptions indicate
failures a program cannot, in general, recover from.

Let’s make an exception happen. We can do this by removing part of the data needed
to have the startActivity method call work correctly. Comment out line 22 of the
code, as shown:

// callIntent.setData(Uri.parse("tel:9785551212"));

Now make some changes to breakpoints. Clear the breakpoint on line 21, and set a
breakpoint on line 25, where, in the catch clause, the method of the Log class is called
to log the caught exception. Use the Run → Debug command again to start the program.

This time you will see execution stop at the new breakpoint you set. You will also see
that an exception has been thrown. The Debug view in Eclipse shows a stack back-
trace, a list of all the methods called when the exception was thrown. The Variables
view shows that activityException now refers to the exception that was thrown. Look
at the members of the exception to see the information this exception provides.

If you examine the exception that was thrown (you can do this by hovering your mouse
over activityException) you will see that the explanation for the exception reads “No
activity found to handle intent.” That is, in the case of an Intent object created with
Intent.ACTION_CALL as the argument to the constructor, it also needs the data of the
Intent to be set correctly in order to find an activity to process that Intent.

Android Application-Level Modularity and Telephony
Getting modularity right is difficult. In the case of Android, the problem is especially
difficult: mobile phones were not designed to have replaceable software components,
but Android is all about replaceable, modular parts. Every part of the Android appli-
cation environment, even core components that handle phone calls and talk to the
mobile radio, can be replaced by code you can write.

How do you avoid perplexing program authors with too much complexity managing
the interfaces and the versions of the interfaces between modules? The mobile radio in
a handset has a particularly complex interface. In addition to the obvious functionality
for starting and ending phone calls and reporting state and error conditions, it also
encompasses critical functions such as emergency calls, and obscure functions such as
“MMI codes” that enable users to access features of the phone and mobile network
through special dialing strings.

Android provides a practical, usable, and flexible system for modularity for telephony
applications. It uses the Android system of Intent objects and activities that listen for
Intent objects that indicate they should handle a particular request. In this case, we
see that the Intent class and the activities and data you need to specify when making

Android Application-Level Modularity and Telephony | 285

a phone call are easy to use. We also see that application-level modularity is a boon to
practicality: because you don’t need to track the inner workings of a phone call—
PhoneApp does it for you.

Android does all of this without replacing, modifying, or adding requirements to the
modularity tools provided by Java. You still have class libraries, reflection, and other
tools for making and using existing Java software modules.

In the next chapter, you will see what happens inside of Android’s telephony software,
all the way down to how the mobile radio is commanded to start a phone call.

286 | Chapter 14: Simple Phone Calls

CHAPTER 15

Telephony State Information and
Android Telephony Classes

The previous chapter showed how to use Android’s built-in PhoneApp application,
which simplifies the task of placing of phone calls. This chapter shows you how to get
more information about telephone service and the actual calls you make.

After an example that puts one of the telephony features to use, we’ll present a short
guide to PhoneApp internals.

We use the term “telephony” to refer to the parts of the Android system
that depend on a radio communicating with the public land mobile
network (PLMN) to provide communication and location functions.
Sharing the use of this radio among multiple applications is a key goal
for Android’s telephony modules.

Operations Offered by the android.telephony Package
The android.telephony package contains a set of classes that can be used by any ap-
plication in the Android environment to monitor the state of Android’s mobile network
connection. It also contains classes for locating a device using the mobile network.
Finally, it offers utility classes for parsing, formatting, and otherwise managing phone
numbers, although there is no architectural benefit to locating those classes in this
package.

The telephony package does not allow you to place, end, or otherwise meddle in phone
calls; it focuses on retrieving information and giving users an interface to edit telephone
numbers. We’ll explain later why Android reserves the actual control over phone calls
to PhoneApp.

287

Package Summary
The android.telephony package contains the following packages:

CellLocation
Methods to request location information.

PhoneNumberFormattingTextWatcher
Callback methods that notify an application about changes to phone numbers
themselves. When used with a TextView object, it formats the text as a phone num-
ber using methods in the PhoneNumberUtils class.

PhoneNumberUtils
A utility class that contains methods for processing strings containing phone
numbers.

PhoneStateListener
Callback methods that track changes in the state of the mobile network connection,
the call, or other telephony objects.

ServiceState
Methods that return information about the current mobile network service pro-
vider and the availability of service.

TelephonyManager
Methods that provide information about the state of mobile service, the call state,
the SIM, the network, the subscriber to the mobile service, voicemail, and other
related information.

Because these classes don’t control hardware or change state information about phone
calls, they don’t have any access control.

Limitations on What Applications Can Do with the Phone
Some readers may be disappointed to see that the android.telephony package limits
their access to getting information, and does not provide direct control over the dialer
or the state of a call. There are good reasons for this. Essentially, providing a low-level
telephony API that can be shared among multiple applications is perilous.

A mobile handset is a state machine that keeps track of the mobile radio reports, pro-
vides audible call state indications to the user, and enables the user to provide inputs
that modify that state. Even if you could design an API that would, hypothetically, share
a mobile radio among multiple applications on a per-call basis, the user interface and
ergonomic design that would go along with shared control among multiple applications
would be difficult and probably even intractable. A phone is not like a PC with a desktop
user interface: you can’t share control over the parts of a device that constitute the
phone the way you can share the screen of a PC.

Android provides a workable solution that keeps telephony usable while making as
much of the system open to your applications as is practicable. As we saw in the

288 | Chapter 15: Telephony State Information and Android Telephony Classes

previous chapter, PhoneApp exposes an Intent that lets other applications initiate
phone calls, while enabling a single application to control the mobile radio in an An-
droid handset. The android.telephony package further exposes information about tel-
ephone service and the calls made by an application.

It’s useful to think of telephony on Android as an interface that keeps critical functions
private while providing public APIs for functions where it is safe to do so. This is a good
example of a successful Android design strategy.

Example: Determining the State of a Call
This section shows how to track the state of a phone call. It adds some of the classes
described in the previous section to the application shown in “Creating an Example
Application to Run the call Method” on page 278, which finds and uses PhoneApp to
start and control a phone call. Here, in addition to starting a phone call and letting
PhoneApp control it, the application gets some information about the call as it is
happening.

In order to get this information, we need to extend the PhoneStateListener class, make
an instance of our subclass, and pass that instance to the TelephonyManager.listen
method. Example 15-1 shows the code for our subclass of the PhoneStateListener class.

Example 15-1. Defining a Listener for telephone call state

private class ListenToPhoneState extends PhoneStateListener {

 public void onCallStateChanged(int state, String incomingNumber) {
 Log.i("telephony-example", "State changed: " + stateName(state));
 }

 String stateName(int state) {
 switch (state) {
 case TelephonyManager.CALL_STATE_IDLE: return "Idle";
 case TelephonyManager.CALL_STATE_OFFHOOK: return "Off hook";
 case TelephonyManager.CALL_STATE_RINGING: return "Ringing";
 }
 return Integer.toString(state);
 }
}

The lines we’ve highlighted are:

Overrides the onCallStateChanged method of the PhoneStateListener class.

Adds a message to Android’s log whenever the state changes.

Chooses meaningful strings to represent call states.

In this subclass of the PhoneStateListener class, we override the onCallStateChanged
method, which Android calls when a call’s state changes. We use the Log class, a static

Operations Offered by the android.telephony Package | 289

class with utility methods for logging information, to log the changes as Android passes
them to us.

Finally, our stateName method decodes the states that correspond to the constants de-
fined in the TelephonyManager class to make the log more readable.

Returning to our main application from “Creating an Example Application to Run the
call Method” on page 278, we have to change it by creating a Listener and assigning
our subclass of PhoneStateListener to it. Here is the code for the entire modified ex-
ample application, which now tracks and logs state transitions:

package example.telephony;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Context;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.telephony.PhoneStateListener;
import android.telephony.TelephonyManager;
import android.util.Log;

public class telephonyExplorer extends Activity {
ListenToPhoneState listener;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 call();
 }

 private void call() {
 try {
 Intent callIntent = new Intent(Intent.ACTION_CALL);
 callIntent.setData(Uri.parse("tel:9785551212"));
 startActivity(callIntent);

 TelephonyManager tManager = (TelephonyManager)
 getSystemService(Context.TELEPHONY_SERVICE);
 listener = new ListenToPhoneState();
 tManager.listen(listener, PhoneStateListener.LISTEN_CALL_STATE);
 } catch (ActivityNotFoundException activityException) {
 Log.e("telephony-example", "Call failed", activityException);
 }
 }

 private class ListenToPhoneState extends PhoneStateListener {

 public void onCallStateChanged(int state, String incomingNumber) {
 Log.i("telephony-example", "State changed: " + stateName(state));
 }

290 | Chapter 15: Telephony State Information and Android Telephony Classes

 String stateName(int state) {
 switch (state) {
 case TelephonyManager.CALL_STATE_IDLE: return "Idle";
 case TelephonyManager.CALL_STATE_OFFHOOK: return "Off hook";
 case TelephonyManager.CALL_STATE_RINGING: return "Ringing";
 }
 return Integer.toString(state);
 }
 }
}

The lines we’ve highlighted are:

New classes that must be imported to add a Listener for the telephone call state.

Adds a definition for the Listener.

Connects to Android’s telephone call manager.

Assigns our extended Listener class (defined at item 5) to the variable defined in
item 2.

Code from Example 15-1, defining our Listener.

Running this application results in output to the log window in Eclipse that should
look something like this:

11-19 01:47:03.704: INFO/telephony-example(159): State changed: Idle
11-19 01:47:04.774: INFO/telephony-example(159): State changed: Off hook

Android Telephony Internals
The rest of this chapter covers telephony-related classes in the internals package that
only PhoneApp uses, android.internal.telephony. This package is layered over an im-
plementation of telephony internals for a particular telephony technology, such as GSM
or CDMA. That layer, in turn, communicates with a Radio Interface Layer (RIL) that
is implemented as a daemon in Android.

Figure 15-1 shows the architecture of the Android telephony system. PhoneApp sup-
ports an Intent that enables other applications to start phone calls. The Telephony
Manager is available through Listeners, as shown in the previous section.

Inter-Process Communication and AIDL in the
android.internal.telephony Package
Many of the internal packages use the remote methods feature discussed in “Remote
Methods and AIDL” on page 265. The TelephonyManager and PhoneStateListener
classes rely on this to communicate with PhoneApp. The ServiceManager class is also
used.

Android Telephony Internals | 291

To marshall data for remote methods, the package includes AIDL files. For instance,
the following AIDL comes from IPhoneStateListener.aidl:

oneway interface IPhoneStateListener {
 void onServiceStateChanged(in ServiceState serviceState);
 void onSignalStrengthChanged(int asu);
 void onMessageWaitingIndicatorChanged(boolean mwi);
 void onCallForwardingIndicatorChanged(boolean cfi);

 // we use bundle here instead of CellLocation so it can get the right subclass
 void onCellLocationChanged(in Bundle location);
 void onCallStateChanged(int state, String incomingNumber);
 void onDataConnectionStateChanged(int state);
 void onDataActivity(int direction);
}

The android.internal.telephony Package
This package contains the classes and interfaces PhoneApp uses to provide services to
other applications that want to start phone calls, and classes that define an API to the
RIL.

PhoneApp, like all parts of Android, is theoretically replaceable. If your application
needs to modify the classes used by PhoneApp, your application will probably have to
replace or modify PhoneApp, and should provide the same services to other applica-
tions, using the classes in this package.

PhoneApp

Internal telephony API

GSM telephony implementation

RIL

GSM RIL library

Figure 15-1. Layers of telephony packages

292 | Chapter 15: Telephony State Information and Android Telephony Classes

The description of these classes should help you understand how Android interfaces
to a mobile radio, and the capabilities that are exposed—and not exposed—by
PhoneApp to other applications. This is a large and complex package, and a complete
understanding will require reading the Android source code. These descriptions will
help you find where to start for your purposes:

ATParseEx
Extends RuntimeException and is thrown by methods of the ATResponseParser
class.

ATResponseParser
This class parses part of the AT command syntax used to communicate with the
mobile radio hardware in a mobile handset. This is, in fact, a command syntax very
much like the AT command syntax used by modems, a standard described in the
3GPP document number TS 27.007 and related specifications. This protocol for
controlling mobile radios is widely used.

Call
This class is an abstract base class. Other classes use it as a basis for objects that
represent phone calls and the state of those calls.

CallerInfo
This class holds information about the party that originated an incoming call. This
class starts with caller ID information from the mobile network interface and looks
up other information about a caller in the database of contacts.

CallerInfoAsyncQuery
This class enables asynchronous database queries for information that could be
found about a caller based on the caller ID information.

CallStateException
The class extends Exception and is thrown by methods that maintain call state in
cases where state is inconsistent.

Connection
This class is an abstract base class used by other classes, and is a basis for objects
that represent connections on the mobile network and the state of these connec-
tions. Connection objects can be associated with a Call object, but they can also
exist independently. The data in a Connection object can be especially useful in
diagnosing the reason a call failed.

DefaultPhoneNotifier
This class implements the PhoneNotifier interface in order to receive notifications
from a Phone object. It then uses the Android service system to communicate state
to Activity instances that have registered to receive those notifications. See the
Handler and Mailbox classes for information on how to receive notifications.

Android Telephony Internals | 293

IPhoneStateListener
This interface defines the signatures of methods an application implements to re-
ceive notification of call state change, and changes to forwarding and message-
waiting states.

IPhoneSubInfo
This interface is used to obtain subscriber information.

ITelephony
This interface defines the inter-process interface used in TelephonyManager to
enable applications to communicate with PhoneApp.

ITelephonyRegistry
This interface is the callback interface from the RIL daemon.

MmiCode
This interface defines callbacks related to “MMI codes.” These are special numbers
a user can dial and key sequences that a user can enter during a call to access,
control, and administer supplementary services, such as call waiting, call hold, etc.
MMI codes and related functionality are described in the 3GPP document number
TS 22.030.

Phone
This interface includes callbacks and methods for accessing the state of a mobile
phone.

PhoneBase
This class is an abstract base class that implements the Phone interface.

PhoneFactory
This class contains methods used to create instances of the GSMPhone class, a sub-
class of the Phone class.

PhoneNotifier
This interface specifies the API a telephony implementation uses to notify a phone
state listener of state changes.

PhoneStateIntentReceiver
This class handles Intent objects that have intent types specified in the
TelephonyIntents class. This class enables Android applications to use the Intents
system to obtain phone state information.

PhoneSubInfo
This class contains methods for obtaining information about a mobile service sub-
scriber, such as the unique identifying number for the handset (IMEI), the unique
identifying number for the subscriber (IMSI), the serial number of the SIM card, etc.

SimCard
This interface defines the API for accessing the SIM card.

294 | Chapter 15: Telephony State Information and Android Telephony Classes

TelephonyIntents
This class defines constants for broadcast intents that have similar functionality to
the TelephonyManager API.

TelephonyProperties
This class defines the constants used with the SystemProperties class for setting
and getting telephony-related properties.

These classes are not documented in the Android SDK documentation, but the de-
scriptions here should give you some understanding of the source code for these classes.

The android.internal.telephony.gsm Package
Many of the classes and interfaces in the previous section are typical of a Java API that
can have multiple implementations. The implementations of the API defined in the
telephony.internal package correspond to a library used in the RIL. To better under-
stand this API, we will look at one implementation here that supports GSM.

Thus, this section delves further into the telephony internals of Android, looking es-
pecially at how the interfaces and abstract base classes are implemented and subclassed
to enable access to the functionality of GSM telephony. Although it may seem that
specifications such as TS 27.007 cover mobile telephony in general, this layer of An-
droid actually has to accommodate variations in mobile telephony standards. In CDMA
telephony, for instance, the SIM card is an optional part of the standard and is rarely
present in CDMA handsets. In this case, the package described in this section would
be replaced by a CDMA-oriented package with a similar architectural relationship to
the higher-level classes described in the previous section. The RIL code is also specific
to the type of telephony in the handset.

At the RIL layer, the differences between GSM and CDMA are mainly outside the core
functionality of making phone calls, so you may be wondering why all these layers and
APIs are necessary. But, as the description of the classes specific to communicating with
a GSM RIL will show, there are plenty of differences in detail, such as SIM cards, the
type of mobile data network, etc. These make it impractical to design a universal in-
terface to mobile radios, despite the use of a standard protocol for communicating with
them:

AdnRecord
This class is used to load and store Abbreviated Dialing Numbers (ADNs) to and
from the SIM card. ADNs are short numbers used for information calls, emergency
calls, etc.

AdnRecordCache
This class caches and enables access to ADNs.

Android Telephony Internals | 295

ApnSetting
This class holds data specifying the access point name (APN) and other parameters
for connecting to General Packet Radio Service (GPRS) and 3G mobile data net-
works. This mobile data technology is specific to GSM networks.

BaseCommands
This class implements the CommandsInterface interface, which is used throughout
the GSM telephony classes to communicate with the GSM radio.

CallFailCause
This interface defines constants for decoding failure cause codes.

CallForwardInfo
This class holds data that corresponds to the parameters of a call-forwarding com-
mand to the RIL.

CallTracker
This class maps information from the RIL to state transitions for the GSMCall class.

CommandException
This class is an exception thrown when the RIL reports an error from a command.

CommandsInterface
This interface defines the API to the GSM RIL. This interface is implemented by
the BaseCommands class.

DataConnectionTracker
This tracks the state of GPRS packet data protocol (PDP) connections. This type
of connection is specific to GSM mobile data.

DataLink
This class implements the DataLinkInterface interface and is used in the PPPLink
class, which manages point to point protocol (PPP) links in GPRS networking.

DataLinkInterface
This class defines the API for connecting and disconnecting PPP links.

DriverCall
This class parses information, in AT command syntax, from the mobile radio, and
turns it into call state information.

EncodeException
This class is an exception thrown by methods of the GSM alphabet class, which
encodes UTF-16 (as used in Java) into the 7-bit SMS character set.

GSMAlphabet
This class is a utility class containing static methods for encoding UTF-16 to the
7-bit SMS character set.

GSMCall
This class extends the Call class, and implements the abstract methods of that
class, thereby implementing parts of the Android telephony internals API. This
class models calls in GSM telephony.

296 | Chapter 15: Telephony State Information and Android Telephony Classes

GSMConnection
This class extends the Connection class, and like the GSMCall class, implements the
abstract methods of the Connection class. This class models connections in GSM
telephony.

GSMPhone
This class extends the Phone class and, as with both the GSMCall and
GSMConnection classes, implements the abstract methods of the Phone class.

GsmMmiCode
This class implements the MmiCode interface and the part of the telephony API
defined in that interface.

GsmSimCard
This class implements the SimCard interface, another part of the implementation
of the telephony internals API. This class enables access to data in the SIM card.

ISimPhoneBook
This interface defines an API for accessing ADN records stored in the SIM card.

ISms
This interface defines the API for sending SMS messages.

MccTable
This class is a utility class that contains a table of Mobile Country Codes (MCCs).
In principle, these codes are not specific to a GSM RIL, but they are specific to this
implementation of a GSM RIL.

NetworkInfo
This class is a container for network state information.

PDPContextState
This contains data about a PDP session, including the IP address.

PdpConnection
This class contains information about the data connection associated with a PDP
context.

PppLink
This class extends DataLink and implements DataLinkInterface to provide an
implementation of this part of the RIL interface.

RIL
This class extends the BaseCommands class and also implements the
CommandsInterface interface, forming a complete implementation of the interface
for sending commands to the RIL. This is where communication with the RIL takes
place. An instance of the RIL class is created in the PhoneFactory class, in the course
of creating an instance of the GSMPhone class.

RILConstants
This interface defines constants used in the RIL class.

Android Telephony Internals | 297

ServiceStateTracker
This class polls the RIL daemon for signal strength and tracks other aspects of the
state of mobile service.

SIMFileHandler
This enables access to the SIM filesystem.

SIMRecords
This class enables access to specific files in the SIM filesystem containing infor-
mation such as the subscriber’s IMSI.

SimConstants
This interface contains constants used in other classes accessing data in the SIM.

SimException
This class extends Exception and is used in other classes to throw an exception
related to errors accessing data in the SIM.

SimFileNotFound
This class extends SimException and is used in the SimIoResult class in specific error
conditions.

SimPhoneBookInterfaceManager
This class extends ISimPhoneBook and provides a service interface for accessing
ADN records in the SIM.

SimProvider
This class extends ContentProvider and creates a content provider interface to SIM
ADN/SDN/FDN records in the SIM.

SimSmsInterfaceManager
This class extends ISms and creates a service interface for accessing SMS messages
stored in the SIM.

SimTlv
This class is an object interface for accessing tag-length-value records in the SIM,
and is used in the SIMRecords class.

SimUtils
This class contains static utility methods for manipulating data encoded in
binary-coded decimal and other encodings encountered in SIM data.

SMSDispatcher
This class implements the sending of SMS messages and notifies applications that
use the Handler interface to this class regarding the status of SMS messages.

SmsHeader
This class contains constants and methods for decoding SMS headers.

SmsRawData
This class implements Parcelable and is used in implementing service interfaces for
accessing SIM data.

298 | Chapter 15: Telephony State Information and Android Telephony Classes

SmsResponse
This class associates a message reference with an acknowledgment.

SuppServiceNotification
This class contains constants for decoding information about supplementary
services.

VoiceMailConstants
This class parses information in the etc/voicemail-conf.xml file.

There is another package organized hierarchically under the internal.telephony.gsm
package: the stk package, which contains classes for accessing the SIM. This package
is not exposed outside the internal.telephony.gsm package and is beyond the scope of
this chapter.

Exploring Android Telephony Internals
A lot of code lies between creating an ACTION_CALL Intent object and dialing a call. Here
we will go even deeper into Android’s telephony system to see what Android is telling
the mobile radio, and match that up with what we have done in the example application
earlier in this chapter.

To see how, and when, Android actually commands the hardware to dial a number,
we can use Android’s logging system. To access the log buffer for information about
the traffic between Android software and the mobile radio, we will also have to use the
Android Debug Bridge, adb. We will start a shell that can run commands in the emu-
lator, and we will use the logcat utility to display logging information as it becomes
available.

First, set a breakpoint in the example application on line 25, where the Intent object
is created and before the call to the startActivity method.

Then, start the application with the debugger: Select Run → Debug. When the “Debug
as” dialog appears, select Android Application.

The application will run and stop at the breakpoint.

Now look at the log. Open a command-line window and change your working directory
to the directory where you have put the Android SDK. There you should see a directory
named tools. Change your working directory to tools. You should see a program there
named adb.

Next, use adb to find the name of the emulator that is running as a result of starting the
application with the debugger. Type the following:

./adb devices

adb will list all the emulators running, which should be just one. The output will look
something like this:

Android Telephony Internals | 299

...
emulator-5554 device

Now use adb to start a shell that can run programs in the emulator (if adb finds
an emulator with a different name on your system, use that name instead of
“emulator-5554”):

./adb -s emulator-5554 shell

This will result in a shell prompt:

#

The shell you are now typing commands into is executing those commands in the
emulator. Now use the logcat command to show the log of traffic between the mobile
radio and the RIL:

logcat -b radio

This will result in a lengthy listing of AT commands and responses. For the most part,
they are asking for and reporting the signal strength. This is what the RIL and the mobile
radio are doing when nothing else is going on.

The lines tagged D/AT are the verbatim AT commands exchanged between the mobile
radio and the RIL. The ones labeled AT> are from the RIL to the mobile radio, and the
ones labeled AT< are from the mobile radio to the RIL. The other lines in the log are a
more-readable decoding of the information in the AT commands. You can see the part
of the RIL interface in Java logging requests sent to the RIL daemon, RILD, and the
RIL code in RILD logging as it sends the appropriate AT commands to the mobile radio
and decodes the results.

Now use the Eclipse debugger to step over the line where the Intent object is created.
Looking at the log output, you see that nothing interesting has happened yet: the RIL
and the mobile radio (really, an emulation of a mobile radio) are polling the signal
strength. Step over the next line, where the phone number is added to the Intent object
and, similarly, nothing has happened yet.

Now step over the next line, which should look like this:

startActivity(callIntent);

Here we get quite a bit of interesting output from the logger. It should look something
like this:

D/GSM (85): [GSMConn] update: parent=DIALING, hasNewParent=false,
 wasConnectingInOrOut=true, wasHolding=false, isConnectingInOrOut=true,changed=false
D/RILJ (85): [0161]> SET_MUTE false
D/RIL (22): onRequest: SET_MUTE
D/RILJ (85): [0161]< SET_MUTE error:
 com.android.internal.telephony.gsm.CommandException: REQUEST_NOT_SUPPORTED
D/RILJ (85): [UNSL]< CALL_STATE_CHANGED
D/RILJ (85): [0162]> GET_CURRENT_CALLS
D/RIL (22): onRequest: GET_CURRENT_CALLS
D/AT (22): AT> AT+CLCC

300 | Chapter 15: Telephony State Information and Android Telephony Classes

D/AT (22): AT< +CLCC: 1,0,2,0,0,"9785551212",129
D/AT (22): AT< OK
D/RILJ (85): [0162]< GET_CURRENT_CALLS [id=1,mo,DIALING,voice,norm,129,0]
D/GSM (85): [GSMConn] update: parent=DIALING, hasNewParent=false,
 wasConnectingInOrOut=true, wasHolding=false, isConnectingInOrOut=true, changed=false
D/AT (22): AT< RING
D/RILJ (85): [UNSL]< CALL_STATE_CHANGED
D/RILJ (85): [0163]> GET_CURRENT_CALLS
D/RIL (22): onRequest: GET_CURRENT_CALLS
D/AT (22): AT> AT+CLCC
D/AT (22): AT< +CLCC: 1,0,3,0,0,"9785551212",129
D/AT (22): AT< OK
D/RILJ (85): [0163]< GET_CURRENT_CALLS [id=1,mo,ALERTING,voice,norm,129,0]
D/GSM (85): [GSMConn] update: parent=ALERTING, hasNewParent=false,
 wasConnectingInOrOut=true, wasHolding=false, isConnectingInOrOut=true, changed=true
D/RILJ (85): [0164]> SET_MUTE false
D/RIL (22): onRequest: SET_MUTE
D/RILJ (85): [0164]< SET_MUTE error:
 com.android.internal.telephony.gsm.CommandException:
 REQUEST_NOT_SUPPORTED
D/RILJ (85): [UNSL]< CALL_STATE_CHANGED
D/RILJ (85): [0165]> GET_CURRENT_CALLS
D/RIL (22): onRequest: GET_CURRENT_CALLS
D/AT (22): AT> AT+CLCC
D/AT (22): AT< +CLCC: 1,0,3,0,0,"9785551212",129
D/AT (22): AT< OK
D/RILJ (85): [0165]< GET_CURRENT_CALLS [id=1,mo,ALERTING,voice,norm,129,0]
D/GSM (85): [GSMConn] update: parent=ALERTING, hasNewParent=false,
 wasConnectingInOrOut=true,
 wasHolding=false, isConnectingInOrOut=true, changed=false
D/RILJ (85): [UNSL]< CALL_STATE_CHANGED
D/RILJ (85): [0166]> GET_CURRENT_CALLS
D/RIL (22): onRequest: GET_CURRENT_CALLS
D/AT (22): AT> AT+CLCC
D/AT (22): AT< +CLCC: 1,0,3,0,0,"9785551212",129
D/AT (22): AT< OK
D/RILJ (85): [0166]< GET_CURRENT_CALLS [id=1,mo,ALERTING,voice,norm,129,0]
D/GSM (85): [GSMConn] update: parent=ALERTING, hasNewParent=false,
 wasConnectingInOrOut=true,
 wasHolding=false, isConnectingInOrOut=true, changed=false
D/RILJ (85): [UNSL]< CALL_STATE_CHANGED
D/RILJ (85): [0167]> GET_CURRENT_CALLS
D/RIL (22): onRequest: GET_CURRENT_CALLS
D/AT (22): AT> AT+CLCC
D/AT (22): AT< RING
D/AT (22): AT< +CLCC: 1,0,0,0,0,"9785551212",129
D/AT (22): AT< OK
D/RILJ (85): [UNSL]< CALL_STATE_CHANGED
D/RILJ (85): [0167]< GET_CURRENT_CALLS [id=1,mo,ACTIVE,voice,norm,129,0]
D/RILJ (85): [0168]> GET_CURRENT_CALLS
D/RIL (22): onRequest: GET_CURRENT_CALLS
D/AT (22): AT> AT+CLCC
D/AT (22): AT< +CLCC: 1,0,0,0,0,"9785551212",129
D/AT (22): AT< OK
D/RILJ (85): [0168]< GET_CURRENT_CALLS [id=1,mo,ACTIVE,voice,norm,129,0]

Android Telephony Internals | 301

D/GSM (85): [GSMConn] update: parent=ACTIVE, hasNewParent=false,
 wasConnectingInOrOut=true,
 wasHolding=false, isConnectingInOrOut=false, changed=true
D/GSM (85): [GSMConn] onConnectedInOrOut: connectTime=1225978001674
D/RILJ (85): [UNSL]< CALL_STATE_CHANGED
D/RILJ (85): [0169]> SET_MUTE false
D/RIL (22): onRequest: SET_MUTE
D/RILJ (85): [0169]< SET_MUTE error:
 com.android.internal.telephony.gsm.CommandException:
 REQUEST_NOT_SUPPORTED
D/RILJ (85): [0170]> GET_CURRENT_CALLS
D/RIL (22): onRequest: GET_CURRENT_CALLS
D/AT (22): AT> AT+CLCC
D/AT (22): AT< +CLCC: 1,0,0,0,0,"9785551212",129
D/AT (22): AT< OK
D/RILJ (85): [0170]< GET_CURRENT_CALLS [id=1,mo,ACTIVE,voice,norm,129,0]
D/GSM (85): [GSMConn] update: parent=ACTIVE, hasNewParent=false,
 wasConnectingInOrOut=false,
 wasHolding=false, isConnectingInOrOut=false, changed=false

What you are seeing here is a mobile call being started. The call goes through three
states: “dialing,” “alerting,” and “active.” Take a look at how the mobile radio reports
the state of a call. Here the call is in the “dialing” state:

+CLCC: 1,0,2,0,0,"9785551212",129

Here the call is in the “alerting” state:

+CLCC: 1,0,3,0,0,"9785551212",129

Here the call is in the “active” state:

+CLCC: 1,0,0,0,0,"9785551212",129

The third number in the list of parameters in the AT command response indicates the
state of this call. The classes that model the connection, call, and network state in
PhoneApp and the TelephonyManager API keep track of what RILD is telling the mo-
bile radio and what the mobile radio is telling RILD, and this is where that information
comes from.

Now press the red End button (the one with the picture of a telephone receiver) to end
the call. Look for the AT commands that read the state change from the mobile radio,
and at the corresponding TelephonyManager method call that notifies the application of
the change.

Android and VoIP
You may have come to the end of this description of Android telephony surprised, and
perhaps disappointed, to find no mention of Voice over IP (VoIP). After all, GoogleTalk
supports voice calls from PC to PC. Why was this capability omitted from the core
telephony functionality of Android?

302 | Chapter 15: Telephony State Information and Android Telephony Classes

Android was not designed to treat VoIP calls and mobile calls similarly or, from a
programmer’s perspective, through the same APIs. What you see described in this
chapter is an abstraction for mobile telephony, not telephony in general. AT commands
that are nearly universal in mobile telephony—and that are not used outside mobile
telephony—pervade the APIs described here all the way up to the PhoneApp applica-
tion. The inter-process interfaces are designed around capabilities of mobile telephony,
mobile messaging, and mobile data.

As a result, designers of VoIP technologies for Android are left with some design deci-
sions. The current direction treats VoIP as a separate application and makes it possible
in the future to provide a very high-level integration with other parts of the system—
for example, supporting the ACTION_CALL call in Intent objects. This development
would give the user a choice between Android’s built-in mobile telephony and an add-
on for VoIP telephony.

A deeper integration of mobile telephony and VoIP can be implemented in Android,
but it would require extending the functionality of PhoneApp to encompass both IP
and conventional mobile telephony, while providing a compatible interface to appli-
cations written to Android’s TelephonyManager API.

Android and VoIP | 303

APPENDIX

Wireless Protocols

If you’re new to mobile development, the plethora of wireless telephony acronyms can
be confusing at first. The good news is that, for the most part, you can ignore them
because you don’t know exactly which environment your application will run in. The
bad news is that your application should be prepared to run in all of the environments.

To help you follow the debates, standards, and discussions that inevitably arise when
discussing cellular and wireless technologies, this appendix introduces the main pro-
tocols in historical order.

Prehistory
When mobile phones were first invented in the 1940s, they were just analog radios
driven from a car battery. The system was aptly named Mobile Telephone System
(MTS), and it was woefully inadequate. In spite of the high cost of service, waiting lists
to obtain the service were long because MTS offered only a few channels in any geog-
raphy. An “improved” version called IMTS, introduced in the 1960s, helped some, but
was still far short of the demand.

The first analog cellular radio mobile phone systems started to appear in 1969 and the
early 1970s—with phones still the size of a briefcase. The various cellular technologies
in North America converged around the Advanced Mobile Phone Service (AMPS)
standard, still analog technology but now based on cellular radios that could reuse the
frequency spectrum and were standardized across manufacturers. At this time Europe
had no less than nine different analog mobile phone technology standards, one for each
major region and country in the continent.

The Dawn of Second Generation (2G) Digital Cellular
Roaming in Europe was obviously impossible. Partly to alleviate this problem, the
European operators decided to standardize the next generation of mobile phones by
forming the European Telecommunications Standards Institute (ETSI). In the early

305

1980s, ETSI developed a digital mobile phone standard known as GSM (originally
Groupe Special Mobile, later Global System for Mobile Communications). The GSM
standard included something termed Short Message Service (SMS), which used spare
bandwidth on the control channel to send and receive short 160-byte messages.

The GSM system and some other digital cellular standards (such as the digital successor
to AMPS in North America, D-AMPS, or IS-54) multiplex different voice callers on a
common radio frequency by using time division multiplexing (Time Division Multiple
Access, or TDMA). Essentially, the signal from each user is rapidly sampled, and sam-
ples from different users are interleaved and broadcast in an assigned time slot. The
sampled speech is reassembled at the receiving end of the signal, and in this way mul-
tiple users can share a single radio channel.

The cellular protocols are actually quite a bit more complex than this simple explana-
tion would imply. At the same time the radio signal is being sampled and desampled,
it is also hopping around to a preset sequence of frequencies, and samples are being
reordered in time, all in order to reduce mobile effects such as interference, jitter, drop-
outs, and multipath distortion.

In the very late 1980s, Qualcomm introduced a new digital system in the U.S. termed
CDMA, for Code Division Multiple Access (later also called IS-95 and still later
cdmaOne). Instead of dividing each voice signal into time-based divisions, CDMA
transmitted all of the signals on multiple radio frequencies at the same time.

But how to keep the signals from interfering with each other? In CDMA, the signals
make use of orthogonal “codes” that define which of the frequencies are used for which
signal. The signal is transmitted on a number of frequencies defined by the code, and
can be extracted on the receiving end by sampling only those frequencies assigned to
this particular code. The other signals on those same frequencies are averaged out as
noise because they don’t appear consistently in most of the frequencies. CDMA proved
to be much more efficient at spectrum use than TDMA, but GSM had already taken
hold, and was the more popular standard worldwide.

The 2G mobile protocols were mainly designed for voice, but also provided the first
real channels for data. At first the data rates were slow, the coverage spotty, and the
technology inefficient in its use of the available bandwidth because it was based on
circuit switching. The optimistically named High Speed Circuit Switched Data
(HSCSD) system used multiple GSM channels and was rated at 28.8 to 64 kilobits per
second, though it rarely achieved even a fraction of that speed. In the 1990s, HSCSD
was replaced with the General Packet Radio System (GPRS) standard, the first packet-
switched technology for GSM.

Improved Digital Cellular (2.5G)
In the late 1990s, operators could see that demand for voice phones was saturating.
They could foresee the day when everybody who wanted a mobile phone would have

306 | Appendix: Wireless Protocols

one. At the same time, the Internet was becoming ubiquitous, and users were starting
to demand better data access from their mobile phones. Operators looked for ways to
expand the data capacity of their mobile networks while taking advantage of their ex-
isting infrastructure investments. GSM operators expanded their GSM/GPRS networks
to a new standard called Enhanced Data for GSM Evolution (EDGE), which further
improved available data rates and made efficient use of GSM equipment the operators
already had installed. CDMA operators capitalized on similar improvements in that
domain, with standards such as CDMA2000 1X. The theoretical data rates were now
in the hundreds of kilobits per second, though the actual data rates were still much
lower. Phones running Android can be expected to have at least 2.5G data connectivity.

A second wave of data access improvement (sometimes referred to as 2.75G) further
improved data rates, implemented by High Speed Packet Access (HSPA) for GSM and
EV-DO (EVolution Data Optimized, or sometimes translated as EVolution Data Only)
for CDMA. Theoretical data rates were now in the multimegabit-per-second range, and
most Android phones can be expected to have these technologies, if not 3G.

The Rise of 3G
Also in the 1990s, the European telecom community started defining the next genera-
tion of mobile technology, first through ETSI and then through a new organization
called 3rd Generation Partnership Program (3GPP). The standard developed by 3GPP
is called Universal Mobile Telecommunications Standard (UMTS), and though based
fundamentally on Wideband CDMA (WCDMA) technology, was carefully designed
to allow both GSM and CDMA operators to evolve their networks efficiently from their
installed infrastructure to the new standard. This would allow operators around the
world to converge to a new common standard for 3G.*

In the early 2000s, operators spent huge sums of money to purchase spectrum for 3G
wireless networks. 3G networks are now being deployed worldwide, and over the next
few years, new smartphones (including Android-based phones) will all incorporate 3G
technologies.

The Future: 4G
So what’s next? The standards bodies are back at work defining the fourth generation
of wireless network protocols, sometimes termed LTE (for Long Term Evolution). The
apparent winner is a group of protocols called Orthogonal Frequency Division Multi-
plexing (OFDM), or sometimes OFDMA (the “A” is for Access). These protocols use

* Except for operators in the People’s Republic of China, where the government mandated its own version of
UMTS, called Time Division-Synchronous Code Division Multiple Access (TD-SCDMA). TD-SCDMA uses
TDMA as well as CDMA to provide some unique advantages for data traffic. It also avoids the need for PRC
handset makers to pay royalties for most WCDMA intellectual property.

The Future: 4G | 307

radio frequency subcarriers to further improve the data rates achievable for wireless
devices. Similar protocols are used in the WiMAX standards (the higher bandwidth,
longer-range follow-on to WiFi), but it is not clear how WiMAX and LTE will relate to
one another.

Just as with 3G, a round of spectrum auctions is starting to take place for 4G, and
operators are already investing large sums of money into getting ready for 4G services.
Suffice to say that your applications built for Android will someday encounter phones
running 4G protocols, and will be able to take advantage of the higher data rates and
lower latencies that will come with these protocols.

To wrap up, Figure A-1 shows the evolution of protocols discussed in this chapter in
relation to the decade in which they were first deployed and the effective bandwidth
they achieve.

2010

2005

2000

1995

1990

10Kb/s 100Kb/s

HSCSD (24.2Kb–64Kb)

1M/s

Theoretical speed range (log scale)

D
ep

lo
ym

en
t t

im
e

fr
am

e

10M/s 100M/s

GSM/GPRS (up to 114Kb)

CDMA/1xRTT (up to 144Kb)

GSM/Edge (up to 474Kb)

CDMA/EV-DO (400Kb–2Mb)

WCDMA/HSPA (up to 10Mb)

TD-SCDMA (up to 2MB)
WiMAX (up to 75Mb)

Figure A-1. Mobile protocols, bandwidth, and dates of deployment

308 | Appendix: Wireless Protocols

Index

Symbols and Numbers
(pound sign)

adb shell prompt and, 73
defining colors, 49

\ (backslashes), escaping characters, 104
& ampersand, running adb logcat, 73
2D graphics, 221–255
2G (second generation) digital cellulars, 305
3D graphics, 221–255

matrix transformations and, 231
3rd Generation Partnership Program (3GPP),

307
4G (fourth generation digital cellulars), 307

A
Abbreviated Dialing Numbers (see ADNs)
AbsoluteLayout, 215–216
ACCESS_FINE_LOCATION permission, 45
ACCESS_LOCATION_EXTRA_COMMAND

S permission, 45
ACCESS_MOCK_LOCATION permission,

45
action attribute, 46
ACTION_CALL constant, 283, 299

VoIP and, 303
Activities, 6, 103

AndroidManifest.xml file and, 45
Bundles and, 47
class methods, 8, 46
Google Maps, 139
inter-process communication, 258
lifecycle of, 8–10
MapActivities, pausing/resuming and, 144
NotePad application, 117

<activity> tag, 140
Adapters, 192–193
AdapterViews, 192–193
adb (Android Debug Bridge) interface, 58, 71–

74
install command, 35
logcat utility, 299
phones, connecting to, 40
USB drivers, loading, 39

AdbRecord class, 295
AdbRecordCache class, 295
ADNs (Abbreviated Dialing Numbers), 295
ADT (Android Developer Tool), 13

debugger tool, 64–67
installing, 17

Advanced Mobile Phone Service (see AMPS)
AIDL (Android’s Interface Definition

Language), 257
classes, 270–273
remote methods and, 265–276

Alliance (see Open Handset Alliance)
ampersand (&), running adb logcat, 73
AMPS (Advanced Mobile Phone Service), 305
Android Debug Bridge (see adb interface)
Android Developer Tool (ADT), 13

installing, 17
Android Execution Environment, 5
Android Library, 22
Android Market, 87
Android Platform Porting Kit, 5
Android Service Lifecycle, 10
Android Software Development Kit (see SDK)
.android subdirectory, 93
Android toolkit, 12
android.internal.telephony package, 291

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

309

android.os.Debug, 76
android.os.IInterface class, 270
android.telephony package, 287–291
android.view.View class, 221
android.view.ViewGroup class, 162
android:apiKey attribute, 50
android:authorities attribute (<provider>),

128
android:background attribute, 49
android:clickable attribute, 50
android:gravity (TextView) attribute, 50
android:icon attribute, 45
android:id attribute, 49
android:label attribute, 46
android:layout_alignParentBottom attribute,

51
android:layout_centerHorizontal (TextView)

attribute, 50
android:layout_centerInParent attribute, 51
android:layout_height attribute, 48, 49

Button widget, 51
android:layout_width attribute, 48, 49

Button widget, 51
android:name attribute, 45
android:name tag, 129
android:orientation attribute, 48
android:text attribute

Button widgets and, 51
TextView, 50

android:textColor (TextView) attribute, 50
android:textSize attribute

Button widgets and, 51
TextView, 50

AndroidManifest.xml
MapView libraries and, 140
NotePad applications and, 117

AndroidManifest.xml file, 31, 38
application setup in, 81–83
editor, 36
initialization parameters in, 44–46
location without maps and, 148
updating, 128

AndroidRuntime log, 73
Android’s Interface Definition Language (see

AIDL)
animation, 247–252

background, 250–252
surface view, 252
transition, 247–250

Apache license, 5
API keys, generating, 90–95, 140
apiKeys, 140
.apk files, 36

android parameter and, 44
uninstall adb command and, 74

ApnSetting class, 296
<application> tag, 140
Application view (manifest file), 36
applications

building and running, 33–41
components of, 6
loading and starting, 35
signing and publishing, 87–97
uploading, 96

arrangement (layout), 226
assets subdirectory, 22, 31
ATParseEx class, 293
ATResponseParser class, 293
autoLink attribute (TextView), 189
autoText attribute (TextView), 189

B
background animation, 250–252
backslashes (\), escaping characters, 104
.bashrc file, 16
.bash_profile file, 16
batteries, 138

MapActivities, pausing and resuming, 144
binary data, data storage for, 123
Binder, 275
Bitmap, 228, 242
broadcast receivers, 7
Bundle data type, 47
Bundle object, 8
Button class, 167
Button View, 53, 191

callbacks, creating, 54
Button widgets, 51

C
Call class, 293
CallerInfo class, 293
CallerInfoAsyncQuery class, 293
CallFailCause class, 296
CallForwardInfo class, 296
CallStateException class, 293
CallTracker class, 296

310 | Index

CALL_PHONE permission, 45
Canvas class, 227
canvas drawing, 226–237
cat shell command, 73
category attribute, 46
cdmaOne, 306
Cell IDs, 137
CellLocation package (android.telephony),

288
certificates, generating

while debugging, 93–95
certificates, signing/generating, 90–95
CheckBoxes, 193–198
children of View trees, 208
.class files, 36
.classpath file, 31
clip rectangles, 227
closed networks, developing mobile

applications and, 4
Code Division Multiple Access (CDMA), 306
ColorFilter (Paint), 246
colors, 49
columns (databases), 101

creating, 124
Command Pattern, 168
CommandException class, 296
CommandsInterface interface, 296
components of applications, 6
concatMatrix method, 236
Connection class, 293
Console and Tasks Views (Debug perspective),

34
Console/Tasks/Properties pane (Debug

Perspective), 66
constructors (database), 103
consumed events, 178
Contact Manager application, 28
container views, 162, 222

measurement of, 224
content providers, 7, 101–136, 101, 114–136

consuming, 129–136
implementing, 118–129

content resolver, 121
ContentProvider class, 119
ContentProvider method

NotePad and, 119
ContentValues object, 127
CONTENT_URI, defining, 121
Context class, 258

interfaces, publishing, 273
Context.startService(Intent) method, 10
create, read, update, delete (see CRUD)
CRUD (create, read, update and delete), 101
Cursors API, 107, 110

D
D-pad focus, 180
Dalvik Debug Monitor Service (see DDMS)
Dalvik virtual machine, 18, 36

build system, 57
data storage, 122
databases, 53, 101

deleting data from, 113
modifying, 110–114
reading data from, 107–110
updating, 112

DATABASE_NAME variable (NotePad), 119
DATABASE_VERSION variable (NotePad),

120
DataConnectionTracker class, 296
DataLink class, 296
DataLinkInterface class, 296
DDMS (Dalvik Debug Monitor Service), 58,

74
perspective, 34
updating locations and, 153

Debug pane (Debug perspective), 65
Debug perspective, 34

Logcat, 67
debug perspective, 281
debug signatures, 91
debugging, 57–80, 280

tools for, 57
while signing certificates, 93–95

DefaultPhoneNotifier class, 293
delete method, 110, 128

ContentProvider method, extending, 119
development environment, 13–26

creating, 14–18
device-independent pixels (see dp dimensions)
devices adb command, 73
Devices pane (DDMS), 74
.dex files, 36
dimensions for elements, 51
directories, building applications and, 20
dispatchKeyEvent method, 159
doc (documentation) folder, 31
dp (device-independent pixels) dimensions, 51

Index | 311

positioning, 215
draw method (onDraw), 227, 240
drawable folder, 32

icon files and, 45
DrawableContainer class, 241
Drawables, 228, 237–242
DriverCall class, 296

E
Eclipse Debugger, 57, 64–67
Eclipse IDE, 13

building and running applications with, 33
installing, 15
perspectives (see perspectives, Eclipse)
src folder and, 31
starting applications, 18

Eclipse Java Editor, 57, 58–80
Eclipse Package Explorer (see Package Explorer

(Eclipse))
EDGE (Enhanced Data for GSM Evolution),

307
editable attribute (TextView), 189
Editor pane (Debug perspective), 65
EditText, 188–191

debugging, 62
Emacs, 16
emul, 34
Emulator Control pane (DDMS), 75
emulators

AbsoluteLayout, 216
debugging applications and, 67
emulator control view, using DDMS

perspective and, 34
locations, updating on, 152
testing applications on, 13, 18

EncodeException class, 296
End User License Agreement (EULA), 87

attaching, 89
Enhanced Data for GSM Evolution (EDGE),

307
environment variables, 13, 16
errors, 57–80

Java, 58–64
ETSI (European Telecommunications

Standards Institute), 305
EULA (End User License Agreement), 87

attaching, 89
European Telecommunications Standards

Institute (ETSI), 305

event handlers, 166
alternative ways to handle, 177–179

event queues, 159
events, 159, 177

(see also event handlers)
exception handling, 284
execSQL method, 110
execution environment, 5

F
fill_parent value, 50
filters, 246
findViewById method, 166
finish method, 9
fix geo command, 152
focus, 179–183, 179
fourth generation (4G) digital cellulars, 307
fragmentation, developing mobile applications

and, 3
Frame Layout, 209
frame-by-frame animation, 250
“friend finders” applications, 28

G
G1 Android mobile phone, 3
Gallery View, 198–202
Ganymede, 15
gedit editor, 16
geo utility, 152
getCount function (Adapter class), 198
getItem() function (Adapter class), 198
getSystemService() method, 150
getType method, 129

ContentProvider method, extending, 119
getView() function (Adapter class), 198
Global Positioning System (see GPS)
Global System for Mobile Communications

(see GMS)
GMS (Global System for Mobile

Communications), 306
Google Maps activity, 139
GPL license, 4
GPS (Global Positioning System), 138

maps and, 28
GPX files, 153
gradients, 246
Graphical User Interface (see GUI architecture)
graphics, 49

312 | Index

2D and 3D, drawing, 221–255
canvas drawing, 226–237
OpenGL, 252–255

gravity, 225
GridView, 198–202
GSMAlphabet class, 296
GSMCall class, 296
GSMConnection class, 297
GsmMmiCode class, 297
GSMPhone class, 297
GsmSimCard class, 297
GUI (Graphical User Interface) architecture,

157–161
assembling, 161–166

H
handset manufacturers, 5
host-target development environments, 13

I
icons

creating and attaching, 89
subdirectories for, 45

IDEs (integrated development environments),
13, 18

IllegalStateException, 225
IM (Instant Messaging), 28
in (inches) dimensions, 52

positioning layouts, 215
initialization, 44–56

AndroidManifest.xml and, 44–46
inputMethod attribute (TextView), 189
insert method, 110

ContentProvider method, extending, 119
INSERT statement, 110
install command (adb), 35, 73
Instant Messaging (see IM)
Instrumentation view (manifest file), 38
integrated development environments (see

IDEs)
Intent class, 258
intent receivers, 7
Intent.ACTION_CALL constant, 283
intents, 6, 258–265

Google Maps, creating, 139
instance, creating, 282

inter-process communication (see IPC)
interchangeable applications, 6

INTERNET permission, 45
invalidate method, 227
IPC (inter-process communication), 257–276

android.internal.telephony package and,
291

getting results via, 262
IPhoneStateListener interface, 294
IPhoneSubInfo interface, 294
IS-95, 306
ISecondary interface, 270
ISimPhoneBook interface, 297
ISms interface, 297
ITelephony interface, 294
ITelephonyRegistry interface, 294

J
jarsigner tool, 91, 95
Java Development Kit (JDK), 13

installing, 14
Java Development Tool (JDT), 15
Java Native Interface (JNI), 274
Java perspective, 33
Java programming language, 4

AIDL syntax and, 266
compiler, 57
Eclipse Java Editor, 58
initialization and, 52–56
src folder and, 31
XML and, 43

JDK (Java Development Kit), 13
installing, 14

JDT (Java Development Tool), 15
JNI (Java Native Interface), 274

K
key pairs, generating, 92
KeyEvents, 176
KeyPad, 147
keys, generating, 90–95
keytool utility, 92

MD5 fingerprints and, 94
KML files, 153

L
layout folder, 32
layout pass in layouts, 209
layouts, 23, 164, 208–218

widgets, drawing, 222–226

Index | 313

LBS (Location Based Services), 137
mapping and, 139

lifecycles
Activities, 8–10
Android service, 10

limited resources of mobile phones, 5
LinearLayout Views, 163, 209–213
Linux, 13, 275

creating development environments on, 14
kernel, 4
PATH environment variables, setting up,

16
Linux-based phones, 3
ListActivity, 131, 202
ListView, 202
loadURL(String) method, 63
location, 137–154

providers, connecting to, 149
without maps, 148–154

Location Based Services (see LBS)
Location Emulator function, 75
LocationOverlay, 53
Logcat, 67–71

runtime errors, solving, 69
logcat adb command, 73, 299
LogCat view (DDMS), 34
Logcat/Consol/Outline/Properties pane

(DDMS), 75
logfiles, debugging applications and, 67
Long Term Evolution (LTE), 307
ls shell command, 73
LTE (Long Term Evolution), 307

M
Mac OS X, 13

creating development environments on, 14
PATH variable, setting up, 17

managedQuery method, 119, 132
Manifest parameters, 44
manifest subdirectory, 22
Map API key, 93
MapActivity, 140

pausing and resuming, 144
mapping, 137–154
maps, 28, 137

(see also mapping)
HashMap, 55
MapView and, 49, 53
MapViews and, 35

zooming, 143
MapView, 35, 49, 53, 140

working with, 140–148
marshalled data, 266
mashups, 6
MaskFilter (Paint), 246
matrix transformations, 231–237
MccTable class, 297
MD5 fingerprints, 93
measure method, 225
measure pass (layouts), 208
measureChild method, 226
measureChildren method, 226
measureChildWithMargins method, 226
measurement (layout), 224–226
measurement specification mode, 224
MeasureSpec.AT_MOST specification mode,

224
MeasureSpec.EXACTLY specification mode,

224
MeasureSpec.UNSPECIFIED specification

mode, 224
menu buttons, 145
Microsoft Windows Mobile, 4
millimeters (mm) dimensions, 52
millimeters (mm), positioning layouts, 215
MIME types, 129, 264
MimiCode interface, 294
mksdcard utility, 76
mm (millimeters) dimensions, 52

positioning layouts, 215
mobile mashups, 6
mobile operators, 5
Mobile Telephone System (MTS), 305
Model, 158

listening to, 168–173
state, 160

Model-View-Controller pattern, 157, 222
mOpenHelper instance variable (NotePad),

120
MTS (Mobile Telephone System), 305

N
NetworkInfo class, 297
NoteEditor Activity, 116
NoteList Activity, 116
NotePad (Android), 116–118

class and instance variables for, 119
NotePadProvider class, 118

314 | Index

NOTES variable (NotePad), 120
NotesList class, 118
NOTES_ID variable (NotePad), 121
NOTES_TABLE_NAME variable (NotePad),

120

O
OFDM (Orthogonal Frequency Division

Multiplexing), 307
onBind method, 10, 273
onCallStateChanged method, 289
OnClickListener method, 54, 167, 191

checkboxes and, 197
onCreate method, 8

ContentProvider method, extending, 119
onStart method and, 10
SQLiteOpenHelper class and, 102

onCreateOptionsMenu method, 146
onDestroy method, 9, 10
onDraw method, 227, 236
OnFocusChangeListener class, 180
onKey methods, 178
onKeyDown method, 177
onLayout method, 226
onMeasure method, 226
onPause method, 9, 10
onResume method, 9, 10
onStart method, 9

onCreate method, 10
onStop method, 9, 10
onTouchEvent method, 177
onTransact method (AIDL), 271
onUpdate method, 104
onUpgrade method, 102
Open Handset Alliance, 3, 4
open source software, 4
OpenGL graphics, 252–255
Orthogonal Frequency Division Multiplexing

(OFDM), 307
Outline pane (Debug perspective), 65
Outline view (Debug perspective), 34
Overview view (manifest file), 36

P
Package Explorer (Eclipse), 25, 59
Package Explorer (Java perspective), 33
package parameter (manifest), 44
Paint, 228, 246

parents of View trees, 208
PATH environment variables, setting up, 13,

16
PathEffect attribute (Paint), 246
PdpConnection class, 297
PDPContextState class, 297
performance of emulation versus device, 88
permissions, 45
Permissions view (manifest file), 38
persistent data storage, 101–136
perspectives (Eclipse), 33

DDMS, 74
Debug, 65

Logcat, 67
Phone interface, 294
PhoneBase class, 294
PhoneFactory class, 294
PhoneNotifier interface, 294
PhoneNumberFormattingTextWatcher

package (android.telephony), 288
PhoneNumberUtils package

(android.telephony), 288
phones, connecting to, 277–286
PhoneStateIntentReceiver class, 294
PhoneStateListener package

(android.telephony), 288
PhoneSubInfo class, 294
pixels (px) dimensions, 51

positioning layouts, 215
Platform Porting Kit (Android), 5
PNG files, creating icons with, 89
points (pts) dimensions, 52
pound sign (#)

adb shell prompt and, 73
defining colors, 49

PppLink class, 297
preorder traversal, 159
private keys, 92
.project file, 31
projection parameter (managedQuery), 132
proprietary software stacks, developing mobile

applications and, 4
<provider> tag, 128
providers, connecting to, 149
Proxy objects, 271
ps shell command, 73
pts (points) dimensions, 52
public keys, generating, 92
publishing applications, 87–97

Index | 315

pull remote local adb command, 74
push local remote adb command, 74
px (pixels) dimensions, 51

positioning layouts, 215

Q
QEMU emulator, 39
query method, 110

ContentProvider method, extending, 119

R
R.java file, 32, 36, 47
Radio Interface Layer (RIL), 291
RadioButtons, 193–198
relational databases, 101
RelativeLayout, 216
remote methods, 257
remote procedure calls (RPCs), 274
requestFocus method, 180
res (resources) subdirectory, 22, 31

icon files and, 45
.res files, 20
resources subdirectory (see res subdirectory)
RIL (Radio Interface Layer), 291
RIL class, 297
RILConstants interface, 297
rm shell command, 73
rotate method, 248
rows (databases), 101
RPCs (Remote Procedure Calls), 274
runtime data collection, 75

S
Satellite View (MapView), 141
savedInstanceState bundle, 23
scaled pixels (sp) dimensions, 52

positioning layouts, 215
Screen Capture pane (DDMS), 75
screen resolution/orientation of emulation

versus device, 88
ScrollView, 204
SDK (Software Development Kit), 5, 13

DDMS, 74
debugging (see debugging)
installing, 15

second generation (2G) digital cellulars, 305
SELECT statements, 102
selection parameter (managedQuery), 132

selectionArgs parameter (managedQuery),
132

semiconductor companies, 5
Series 60 (Nokia), 4
server (adb), 71
services, 7, 273
ServiceState package (android.telephony), 288
ServiceStateTracker class, 298
setClickable map attribute, 143
setEnabled map attribute, 143
setMatrix method, 236
setMeasuredDimensions method, 224
setOnClickListener method, 167
setSatellite map attribute, 143
setStreetView map attribute, 143
setTraffic map attribute, 143
Shader (Paint), 246
ShadowLayer (Paint), 246
shadows, 246
shell adb command, 73
signing applications, 87–97
SimCard interface, 294
SimConstants interface, 298
SimException class, 298
SIMFileHandler class, 298
SimFileNotFound class, 298
SimPhoneBookInterfaceManager class, 298
SimProvider class, 298
SIMRecords class, 298
SimSmsInterfaceManager class, 298
SimTlv class, 298
SimUtils class, 298
SMSDispatcher class, 298
SmsHeader class, 298
SmsRawData class, 298
SmsResponse class, 299
sNotesProjectionMap variable (NotePad), 120
social networking, 27–30
Software Development Kit (see SDK)
software, writing for mobile applications, 5
sortOrder parameter (managedQuery), 132
Source Editor (Java perspective), 33
source files, 20
Source View (Debug perspective), 34
sources (src) subdirectory, 20, 30
sp (scaled pixels) dimensions, 52

positioning layouts, 215
Spinner View, 50, 193–198
SQL (see databases)

316 | Index

SQLite, 53, 101–136
adb shell and, 73
as a database engine, 102
updating data, 127

sqlite3 adb command, 73
SQLiteDatabase class

modifying databases, 110
SQLiteOpenHelper class, 102
src (sources) subdirectory, 20, 30
.src files, 20
stack backtraces, 285
startActivity method, 139, 258
startActivityForResult method, 258, 264
startAnimation method (View), 247
startMethodTracing, 76
Step Over button (Debug toolbar), 66
stopMethodTracing, 76
Street View (MapView), 141
Stub interface, implementing, 271
subdirectories, building applications and, 20
super function, 103
SuppServiceNotification class, 299
surface view animation, 252
surfaceCreated method, 252
surfaceDestroyed method, 252
SurfaceHolder.Callback interface, 252
sUriMatcher variable (NotePad), 120
synchronized blocks, 161, 183

T
T-Mobile phones, running applications, 39–

41
Tabbed Views (Java perspective), 33
TabContentFactory, 205
TabHost, 205–208
TableLayout, 213–215
tag:priority filter specs, 73
TDMA (Time Division Multiple Access), 306
Telephony, 75, 285, 287–303

internals, 291–302
TelephonyIntents class, 295
TelephonyManager package

(android.telephony), 288
TelephonyProperties class, 295
text, drawing, 230
TextView, 24, 188–191

element (XML), 50
threads, 179–183

Threads/Heap/File Explorer pane (DDMS), 35,
74

Time Division Multiple Access (see TDMA)
TitleEditor Activity, 116
TitleEditor class, 118
toolkit, 12
tools (debugging), 57
touch events, listening for, 173
touch focus, 180
touchscreen operation of emulation versus

device, 88
trace analysis, 75
Traceview, 58, 75–80
Traffic View (MapView), 141
transition animation, 247–250
translate method, 248
triangulation, 138

U
Ubuntu Linux

Dapper Drake, 14
USB drivers, loading for ADB, 40

UI component objects, 160
UMTS (Universal Mobile Telecommunications

Standard), 307
uniform resource identifier (URI), 115
uninstall adb command, 74
Universal Mobile Telecommunications

Standard (UMTS), 307
unmarshalled data, 266
unsigned versions of applications, 95
update method, 110

ContentProvider method, extending, 119
UPDATE statements, 102, 127
uri parameter (managedQuery), 132
URIs (uniform resource identifiers), 115
<uses-permission android:name=...> element,

45
USP drivers, debugging on phones, 39

V
values folder, 33
Variables and Breakpoints pane (Debug

perspective), 65
Variables, Breakpoints and Expressions view

(Debug perspective), 34
versions, for applications, 90
vi editor, 16

Index | 317

View class, 158
view-model, 227
ViewGroups, 162, 198–208

container views and, 222
widgets and, 222

Views, 33, 188–198
building, 157–185
widgets and, 221

VoiceMailConstants class, 299
VoIP (Voice over IP), 302

W
WCDMA (Wideband CDMA), 307
Web Standard Tools (WST), 15
WHERE clause, 127
Wideband CDMA (WCDMA), 307
widgets, 187–218

2D and 3D graphics and, 221–243
Button, 51

Windows, 13, 14
environment variables, setting up, 16
USB drivers, loading for ADB, 39

Windows Mobile (Microsoft), 4
wireless protocols, 305–308
WST (Web Standard Tools), 15

X
x.trace file, 77
XML (eXtensible Markup Language), 23

AndroidManifest.xml file and, 31
initialization parameters in, 44–46
Java code and, 43

Z
zoomIn method, 143
zoomInFixing() method, 144
zoomOut method, 144
zoomToSpan() method, 144

318 | Index

About the Authors
Rick Rogers has been developing and marketing embedded systems for more than 30
years. He has focused on software for mobile phones for the last nine years, working
with Linux and other operating environments for companies such as Compaq, Intel,
and Marvell Semiconductor. He is currently a mobile solutions architect at Wind River
Systems.

John Lombardo has been working with Linux since version 0.9. His first book,
Embedded Linux (Sams), was published in 2001. Since then, he’s worked on several
embedded products, including phones and routers. John holds a B.S. in computer sci-
ence and is working on his M.B.A.

Zigurd Mednieks is chief user interface architect at D2 Technologies, a leading pro-
vider of IP communications technology, and is also a consultant and advisor to
companies in the field of embedded user interfaces. He has held senior management
positions at companies making mobile games, communications equipment, and com-
puter telephony applications, and has written and contributed to books on program-
ming and communications technology.

Blake Meike has more than 10 years of experience with Java. He has developed
applications using most of the GUI toolkits and several of the Java mobile device plat-
forms. He likes Android a lot.

Colophon
The animal on the cover of Android Application Development is an Eastern quoll
(Dasyurus viverrinus), an endangered marsupial otherwise known as the Eastern native
cat. Eastern quolls grow to about the same size as household cats, and their thick fur
ranges in color from gray to brown and is dotted with white spots. However, unlike
others of its kind (the Tiger quoll, for example), no spots cover its long, hairy tail.

No longer widespread throughout mainland Australia, the Eastern quoll remains com-
mon in Tasmania. It lives in rain forests and alpine areas, though it prefers dry grass-
lands and forests bordered by pastoral agricultural fields. Within these habitats, the
Eastern quoll hunts for small mammals and steals food from the much larger Tasmanian
devil by night; by day, it slumbers in logs and in nests in underground burrows.

While female Eastern quolls can birth up to 30 babies, typically only 6 will survive, as
the mother only has 6 teats in her pouch for her children. Male and female Eastern
quolls reach sexual maturation less than a year after being born. Provided it survives
infancy, the quoll will live an average life span of six years.

Although some farmers dislike the quoll because it occasionally feeds on chickens and
other small mammals (quolls will feed on injured or ill farm animals), the quoll also
benefits farmers by consuming crop pests, mice, and carrion.

The cover image is from Wood’s Animate Creation Vol. I. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Audience
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Rick Rogers
	John Lombardo
	Zigurd Mednieks
	Blake Meike

	Part I. Development Kit Walk-Through
	Chapter 1. Getting to Know Android
	Why Android?
	The Open Handset Alliance
	The Android Execution Environment
	Components of an Android Application
	Android Activity Lifecycle
	Android Service Lifecycle
	How This Book Fits Together

	Chapter 2. Setting Up Your Android Development
 Environment
	Setting Up Your Development Environment
	Creating an Android Development Environment

	Hello, Android
	Where We’re Going
	Starting a New Android Application: HelloWorld
	Writing HelloWorld
	Running HelloWorld

	Chapter 3. Using the Android Development Environment for Real
 Applications
	MicroJobs: This Book’s Main Sample Application
	Android and Social Networking
	Downloading the MJAndroid Code
	A Brief Tour of the MJAndroid Code
	The Project Root Folder (MJAndroid)
	The Source Folder (src)
	The Resource Folder (res)

	First Steps: Building and Running the MicroJobs Application
	A Very Short Tour of the Android SDK/Eclipse IDE
	Loading and Starting the Application
	Digging a Little Deeper: What Can Go Wrong?
	Running an Application on the T-Mobile Phone
	Enable USB debugging on your phone
	Load the USB driver for ADB
	Connecting the phone
	Running MicroJobs on the phone

	Summary

	Chapter 4. Under the Covers: Startup Code and Resources in the MJAndroid
 Application
	Initialization Parameters in AndroidManifest.xml
	Initialization in MicroJobs.java
	More Initialization of MicroJobs.java

	Summary

	Chapter 5. Debugging Android Applications
	The Tools
	Eclipse Java Editor
	Java Errors
	The Debugger
	Logcat
	Looking at logcat to solve runtime errors
	Writing your own logcat entries

	Android Debug Bridge (adb)
	DDMS: Dalvik Debug Monitor Service
	Traceview
	Trace data collection

	Summary

	Chapter 6. The ApiDemos Application
	Application Setup in the Manifest File
	Finding the Source to an Interesting Example
	Custom Title Demo
	Linkify Demo

	Adding Your Own Examples to ApiDemos

	Chapter 7. Signing and Publishing Your
 Application
	Test Your Application
	Attach an End User License Agreement If Desired
	Create and Attach an Icon and Label
	Clean Up for Release
	Version Your Application
	Obtaining a Signing Certificate and API Key
	Getting a Signing Certificate for an Application You Are Going to Ship
	Generating a key pair (public and private keys) and a signing certificate

	Getting a Signing Certificate While Debugging
	Getting the MD5 fingerprint of your Debug signing certificate
	Getting a Map API Key from Google

	Signing Your Application
	Retesting Your Application
	Publishing on Android Market
	Signing Up As an Android Developer
	Uploading Your Application

	Part II. Programming Topics
	Chapter 8. Persistent Data Storage: SQLite Databases and Content
 Providers
	Databases
	Basic Structure of the MicroJobsDatabase Class
	Reading Data from the Database
	Modifying the Database
	Inserting data into the database
	Updating data already in the database
	Deleting data in the database

	Content Providers
	Introducing NotePad
	Activities
	Database
	Structure of the source code

	Content Providers
	Implementing a content provider

	Consuming a Content Provider
	Create data (insert)
	Read/query data
	Update data
	Delete data

	Chapter 9. Location and Mapping
	Location-Based Services
	Mapping
	The Google Maps Activity
	The MapView and MapActivity
	Working with MapViews
	MapView and MyLocationOverlay Initialization
	Pausing and Resuming a MapActivity
	Controlling the Map with Menu Buttons
	Controlling the Map with the KeyPad

	Location Without Maps
	The Manifest and Layout Files
	Connecting to a Location Provider and Getting Location Updates
	Updating the Emulated Location
	Using geo to update location
	Using DDMS to update location

	Chapter 10. Building a View
	Android GUI Architecture
	The Model
	The View
	The Controller
	Putting It Together

	Assembling a Graphical Interface
	Wiring Up the Controller
	Listening to the Model
	Listening for Touch Events
	Listening for Key Events
	Alternative Ways to Handle Events
	Advanced Wiring: Focus and Threading

	The Menu

	Chapter 11. A Widget Bestiary
	Android Views
	TextView and EditText
	Button and ImageButton
	Adapters and AdapterViews
	CheckBoxes, RadioButtons, and Spinners

	ViewGroups
	Gallery and GridView
	ListView and ListActivity
	ScrollView
	TabHost

	Layouts
	Frame Layout
	LinearLayout
	TableLayout
	AbsoluteLayout
	RelativeLayout

	Chapter 12. Drawing 2D and 3D Graphics
	Rolling Your Own Widgets
	Layout
	Measurement
	Arrangement

	Canvas Drawing
	Drawing text
	Matrix transformations

	Drawables
	Bitmaps

	Bling
	Shadows, Gradients, and Filters
	Animation
	Transition animation
	Background animation
	Surface view animation

	OpenGL Graphics

	Chapter 13. Inter-Process Communication
	Intents: Simple, Low-Overhead IPC
	Intent Objects Used in Inter-Process Communication
	Activity Objects and Navigating the User Interface Hierarchy
	Example: An Intent to Pick How We Say “Hello World”
	Getting a Result via Inter-Process Communication

	Remote Methods and AIDL
	Android Interface Definition Language
	Classes Underlying AIDL-Generated Interfaces
	Implementing the Stub interface
	Getting an instance of the remote Proxy object

	Publishing an Interface
	Android IPC Compared with Java Native Interface (JNI)
	What Binder Doesn’t Do
	Binder and Linux

	Chapter 14. Simple Phone Calls
	Quick and Easy Phone Calls
	Creating an Example Application to Run the call Method
	Embedding the Code Snippet in a Simple Application

	Exploring the Phone Code Through the Debugger
	Creating an Instance of an Intent
	Adding Data to an Instance of an Intent
	Initiating a Phone Call

	Exception Handling
	Android Application-Level Modularity and Telephony

	Chapter 15. Telephony State Information and Android Telephony Classes
	Operations Offered by the android.telephony Package
	Package Summary
	Limitations on What Applications Can Do with the Phone
	Example: Determining the State of a Call

	Android Telephony Internals
	Inter-Process Communication and AIDL in the android.internal.telephony Package
	The android.internal.telephony Package
	The android.internal.telephony.gsm Package
	Exploring Android Telephony Internals

	Android and VoIP

	Appendix. Wireless Protocols
	Prehistory
	The Dawn of Second Generation (2G) Digital Cellular
	Improved Digital Cellular (2.5G)
	The Rise of 3G
	The Future: 4G

	Index

